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ABSTRACT 

 

Viral variants have been developing in 

COVID-19 and especially in the spike protein. 

In order to address these changes one must 

also modify the vaccines currently being 

produced. There are several ways to do this. 

One is the classic post hoc manner of 

monitoring what is produced and then address 

it. The second extreme is pre hoc, anticipating 

what most likely will occur and vaccinate 

against this anticipated variant. We present a 

proposal for a Bayesian pre hoc approach to 

vaccine development with COVID-19 

variants. 
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1 INTRODUCTION 

 

"Prior Planning Prevents Poor Performance" 

 

This was told me by my father early on while growing up. It has been with me ever since. In the 

case of COVID-19 it is clear that many entities failed grossly in any planning at all, especially 

such entities as the CDC, whose virus test kits were a gross failure, not to mention their 

monitoring network. However, what may prove even mor critical is understanding the putative 

mutations of the virus and anticipating what they may most likely be and take pre-emptive steps 

in mitigating for them. The mRNA vaccines have proven highly efficacious and also readily 

modifiable. Thus, if we can look at the most likely spike variants, which we contend can be 

accomplished, then by incorporating them in vaccines we can pre-emptively prevent future 

outbreaks. We examine the elements regarding this goal herein1. 

 

COVID-19 has become a global pandemic. With the introduction of vaccines, the initial virus 

may have a chance to be controlled. However, mutants or variants, are being generated naturally 

at a fast rate and some are getting released by and into the existing pool of infected patients and 

spreading as a secondary pandemic. The question posed is: What can be done to address this 

secondary spread of new variants? 

 

The classic approach is to do a wait and see approach, seeing new infections, ascertain the 

variant, and then modify or enhance the vaccine to address that new variant. We see this in 

annual flu immunizations. Often this works well but there are times when one fails to see a new 

variant or the new variant arises after a set number of newer variants have been selected for 

vaccine preparations. 

 

A second approach may be possible. We examine this approach herein. Namely, we know 

several facts: 

 

1. COVID spike protein comes from an mRNA single stranded segment which is about 3000 

nucleotides long generating a protein of about 1000 nucleic acids in length. We are being 

simplistic at this point. 

 

2. COVID spike protein targets the ACE2 receptor on cells thus enabling entry, replication and 

immune responses. 

 

3. There are multiple ACE2 receptor variants so that the spike may be more infectious in some 

humans than others. 

 

4. We generally know what the pool of ACE2 receptors look like as proteins and where their 

binding to the spike occurs. 

 
1 The author is not an expert on proteins. Thus, this document is merely exploratory and may be subject to 

significant modifications. The author is however competent in the various elements of pattern recognition and AI 

applications to problems similar to what we present herein. The intent of this document is to provoke ideas regarding 

pre-emptive determination of viral evolutionary threats and act accordingly.  



6 | P a g e  

 

 

5. We now know several COVID variants that attach to ACE2 receptors. We know or can know 

the nature of the spike/ligand binding sites. We know or can know the profiles of COVID 

variants and ACE2R variants and their binding strengths. 

 

6. We now know the putative genetic variants that are of concern and arguably we can ascertain 

the genetic changes that led from the wild type originally identified to each variant. 

 

7. We have many powerful computational tools to examine proteins, asses structure from RNA 

elements, and consider mutational changes. The challenge here may be a bit simpler since we 

know the ab initio protein structures and thus we deal with a boundary value problem having 

COVID and its variants on one end and ACE2R and its variants on the other. 

 

Thus, we pose the following challenge: 

 

1. KNOWING BOUNDARY CONDITION PROTEINS FOR SPIKE AND ACE2, AND ASSUMING 

STABILITY IN ACE2 VARIANTS, THEN WHAT MUTATIONS OF THE SPIKE WILL LEAD TO 

BINDINGS TO THESE ACE2?  

 

2. FURTHERMORE, UNDERSTANDING THESE MUTATIONS CAN WE RANK ORDER THEM FROM 

STRONGEST BINDING DOWNWARD? 

 

If we can achieve the two issues noted above, then it would be reasonable to anticipate the next 

set of most likely mRNAs for spikes and in turn use these anticipated spikes pre-emptively in a 

new vaccine profile. 

 

If correct, we can then develop a significant tamping down of infections prior to any substantial 

spread. 

 

We thus examine these assumptions herein looking at what is currently available and what needs 

to be developed.  
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2 COVID-19 

 

We here provide a brief summary of the key issues regarding COVID-19. We present a brief 

summary of the COVID-19 corona virus which allegedly originated in some manner from 

Wuhan, China2. The actual provenance of the virus is yet to be adequately determined. The virus 

has a very high level of transmissibility, virulence, and mutability. In a short period, the virus has 

aggressively spread globally and strangely appears to have had minimal impact in China, its 

source of origin. 

 

2.1 OVERVIEW 

 

The figure below is a graphic example of the corona virus in generic terms. It is a single stranded 

positive RNA virus with a well-defined spike protein on the surface. The spike protein is a 

putative target for immunization efforts. 

 

Spike

Membrane 
Glycoprotein

Envelope Protein

 
 

We now consider some detail as regards to this virus. As Artika et al note: 

 

The schematic diagram of coronavirus life cycle.  

 

The coronavirus infection is initiated by the binding of the virus particles to the cellular 

receptors leading to viral entry followed by the viral and host cellular membrane fusion.  

 

After the membrane fusion event, the viral RNA is uncoated in the host cells cytoplasm.  

 
2 In March 2020 we prepared a preliminary report on thea virus discussing what was known to that data and 

examining the possible pandemic dynamics. In February 4, 2020 we declared this a pandemic despite the WHO and 

CDC delaying any prophylactic actions, the delay thus resulting in the current global pandemic, 

https://www.telmarc.com/Documents/White%20Papers/173Corona.pdf  

 

https://www.telmarc.com/Documents/White%20Papers/173Corona.pdf
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The ORF1a and ORF1ab are translated to produce pp1a and pp1ab, which are subsequently 

processed by the proteases encoded by ORF1a to produce 16 non-structural proteins (nsps) 

which form the RNA replicase–transcriptase complex (RTC). 

 

 This complex localizes to modified intracellular membranes which are derived from the rough 

endoplasmic reticulum (ER) in the perinuclear region, and it drives the generation of negative-

sense RNAs ((–) RNAs) through both replication and transcription.  

 

During replication, the full-length (–)RNA copies of the genome are synthezied and used as 

templates for the production of full-length (þ)RNA genomes.  

 

During transcription, a subset of 7–9 subgenomic RNAs, including those encoding all structural 

proteins, is produced through discontinuous transcription. In this process, subgenomic (–)RNAs 

are synthesized by combining varying lengths of the 30end of the genome with the 50 leader 

sequence necessary for translation.  

 

These subgenomic (–)RNAs are then transcribed into subgenomic (þ)mRNAs.  

 

The subgenomic mRNAs are then translated.  

 

The generated structural proteins are assembled into the ribonucleocapsid and viral envelope at 

the ER–Golgi intermediate compartment (ERGIC), 

 

 followed by release of the newly produced coronavirus particle from the infected cell  

 

2.2 COVID GENE 

 

Various authors have discussed the general structure of a corona virus gene structure and we 

present this below. It is a positive single stranded mRNA virus and the mRNA has a form as 

shown below. It is approximately 30,000 nucleotides in length and the spike protein is 

approximately 3,000 nucleotides in length. As with most corona viruses it contains in the 

mRNA, via the non-structural proteins, the ability to reconstruct itself many times over by 

generating the structural genes and implanting a new copy of the mRNA.  

 

ORF1a

ssRNA
Tail

Non structural 
proteins 1-11

3b

3a

5

ORF1b

S

Non structural 
proteins 12-16

Spike

M 7a 8a N

E 6 7 8

Transmembrane

Envelope

Nuclear 
Capsid

5
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The nonstructural proteins, NSP, for the replicase transcriptase complex. There are four structure 

proteins: 

 

1. S is the spike forming protein, of which we shall speak of later in detail 

 

2. E is the envelope protein for the new virion 

 

3. M is the membrane protein for the new virion 

 

4. N is the nucleocapsid protein for the new virion 

 

Overall, we now have the two sets; those allowing for self-reproduction and those relating to 

construction of the new virion. 

 

The following is the detail of the spike gene which we shall discuss later. 

 

 

NTD FP HR1 HR2 TM CTRBD

1 13 305 319 541 768 806 912 964 1183 12731213 1237  
 

When examining these proteins we must note that the numbers above are those of the nucleic 

acids whereas the nucleotides are three times the number. Thus the 1273 nucleic acids represent 

almost 3900 nucleotides. Mutations in any of these nucleotides can result in a mutation of the 

nucleic acids and thus the protein conformation. The work by Huo et al provides a significant 

amount of detail in the spike protein. 

 

2.3 COVID SYSTEM 

 

We depict the process below for the entry and reproduction of the virion. This process starts with 

the attachment and entry of the virion and ultimately the release of a collection of new virions 

until the cell is depleted and dies. 
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We can summarize the steps as shown above.  

 

1. The virion spike protein attaches to the ACE2 receptor protein. As we will note later this 

means that there is a selective capability in this specific spike protein. As we shall note from 

the literature later, strangely this receptor is weak in Chinese individuals and is a strong bond 

in Europeans and most other ethnicities. We discuss this at length later. 

2. The virion then enters the cell and disassembles. The ss mRNA is extracted 

3. The structure RNA sequences are then translated in the inter ER/Golgi space into the 

constituent proteins. 

4. The ss mRNA is completed to form a complete ds mRNA which will be used to generate 

multiple ss mRNAs to be inserted in other new virions. This may be a point for possible 

mutant changes. 

5. The multiple ss mRNAs and the structural proteins are assembled in the Golgi apparatus and 

extracted. 

6. The final result is a repackaged virion which is budded outwards. 

 

These steps are very general and there are as of yet many holes as to exactly how all this is 

accomplished. Yet for our purposes the processes lay out the locations of the possible mutation 

sites. 

 

2.4 ACE2 AND COVID-19 

 

It is now generally agreed that the virus enters a cell via access to the ACE2 receptor site. We 

shall discuss ACE2 and its functions as well as its variants in some detail in the next section but 
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we summarize some issue here. Jia et al noted early on in 2005 the nexus between ACE2 and 

corona virus infection. 

 

In an early paper by Yan et al the authors discussed the binding of the virus to ACE2. The image 

of the binding sites from the Yan et al paper is shown below. RBD is the receptor binding 

domain of the virus spike and PD is the peptidase domain of the ACE2 protein. The detailed 

binding is show below and the Yan et al paper details their study on this binding. 

 

 
 

Additional analysis has also been done by Lan et al adding significant details. Also, Samavati 

and Uhal have noted: 

 

SARSCoV-2 utilizes a novel metallocarboxyl peptidase angiotensin receptor (ACE) 2 to gain 

entry into human cells. Similar to other CoV, during viral entry into the host cell, the spike 

proteins (S) on the envelope of SARS-CoV-2 are cleaved into S1 and S2 subunits. S2 does not 

interact with the receptor but it harbors the functional elements required for membrane fusion of 

the virion. The S1 protein/receptor interaction is the pivotal determinant for SARS-CoV-2 to 

infect a host species.  

 

S1 contains the receptor binding domain (RBD) and directly binds to the peptidase domain 

(PD) of ACE 2 to gain entry into host cells. Despite high similarity between the RBD of SARS-
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CoV and SARS-CoV-2, several amino acid variations are observed in the middle of the binding 

domain of SARS-CoV- 2, which provide an increased affinity to bind to ACE2 more effectively.  

 

In our proposed study, it will be critical to understand several key issues. 

 

1. The spike mutations from wild type may strongly influence the RBD structure by changing the 

binding characteristics. 

 

2. The ACE2 variants from wild type may likewise influence the PD site binding. 

 

3. The aggressiveness of the virus will depend on the matching that occurs as a result of the 

above two. 
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3 ACE2 RECEPTORS 

 

ACE and ACE2 are two key enzymes involved in homeostasis. ACE activation can result in 

increased blood pressure often mitigated by ACE inhibitors. ACE2 counters these effects. It is 

ACE2 that is targeted by COVID-19 and thus not only does it enter the cell but it inhibits the 

stabilizing effects of ACE2. ACE2 is one of several cellular essential protein receptors and 

catalysts which are involved in homeostasis. We first examine ACE and then ACE2. 

 

3.1 ACE 

 

We first review the ACE pathway effects and then continue on to those of ACE2. The classic 

renin-angiotensin-aldosterone path is shown below wherein vasoconstriction is a prominent 

result.  

 

 

• Reduced Plasma Volume
• Decreased Arteriole 

Pressure
• Decreased NaCl
• Increased Sympathetic NS

Renin

Angiotensinogen

Angiotensin I
Angiotensin II

Aldosterone

• Increased Na absorb
• Increased K secretion

ACE

Liver

Kidney

• Vasoconstriction

 
 

 

Namely, ACE, the angiotensin enzyme, facilitates the conversion of angiotensin I to angiotensin 

II. The latter then produces vasoconstriction and is a frequent driver for hypertension. It can also 

impact the renal system causing increased Na absorption and K secretion. This renin-

angiotensin-aldosterone system is generally well understood. As we shall note, ACE2 provides a 

counterbalance to this system as well as a target for COVID-19 wild type. 

 

3.2 ACE2 

 

The ACE2 gene was discovered some twenty years ago in a study of the cardiovascular system.  

The paper by Marian details some of the issue related to its discovery and is well worth reading. 

It was the ability to understand Ang 1-7 and Mas as drivers for improved homeostasis. ACE2 can 
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be seen as a critical gene not only for cardiovascular functions but a wide variety of systemic 

homeostasis. Thus it is critical to understand that any virus that attacks via ACE2 not only allows 

for immunological effects but also drives compromise of many other functions. Now we can 

view the homeostasis associated with ACE and ACE2. We show this below: 

 

 

 

AT1AT2ACE2

ANG 1-7

ANG 1-9

ANG II

ANG I

Angiotensinogen

ANG I

MAS/G

ACE2

ACE2

ACE

• Cell Death
• Fibrosis
• Injury
• Vasoconstriction
• Hypertension
• Coagulopathy

• Cell Protection
• Coagulation
• Vasodilation

 
 

In the above we see the production of ANG 1-9 and ANG 1-7 which control MAS/G have the 

structures we depict below. 

 

Leu

ACE2/PRO

Angiotensin I

Angiotensin 1-9

LeuPheAsp Arg Val Tyr Ile Hrs Pro His

PheAsp Arg Val Tyr Ile Hrs Pro His
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Following the above, we can then see how Ang 1-7 is readily obtained as shown below. 

 

PheAsp Arg Val Tyr Ile Hrs Pro

Asp Arg Val Tyr Ile Hrs Pro Phe

ACE2/PRO

Angiotensin II

Angiotensin 1-7
 

 

 

As to the above Santos et al have noted the nexus between angiotensin and the 1-7 interface with 

Mas via ACE2, namely: 

 

The renin–angiotensin system plays a critical role in blood pressure control and body fluid and 

electrolyte homeostasis. Besides angiotensin (Ang) II, other Ang peptides, such as Ang III [Ang-

(2–8)], Ang IV [Ang-(3–8)], and Ang-(1–7) may also have important biological activities. Ang-

(1–7) has become an angiotensin of interest in the past few years, because its cardiovascular and 

baroreflex actions counteract those of Ang II. Unique angiotensin-binding sites specific for this 

heptapeptide and studies with a selective Ang-(1–7) antagonist indicated the existence of a 

distinct Ang-(1–7) receptor.  

 

We demonstrate that genetic deletion of the G proteincoupled receptor encoded by the Mas 

protooncogene abolishes the binding of Ang-(1–7) to mouse kidneys. Accordingly, Mas-deficient 

mice completely lack the antidiuretic action of Ang-(1–7) after an acute water load. Ang-(1–7) 

binds to Mas-transfected cells and elicits arachidonic acid release. Furthermore, Mas-deficient 

aortas lose their Ang-(1–7)-induced relaxation response. Collectively, these findings identify 

Mas as a functional receptor for Ang-(1–7) and provide a clear molecular basis for the 

physiological actions of this biologically active peptide.  

 

Now ACE2 has significant properties. As Samavati and Uhal note: 

 

In addition to its protective role in the cardiovascular system, ACE2 has a direct protective role 

in alveolar epithelial cells. In the lungs ACE2 has numerous physiological functions, most of 

which are protective against lung injury. Similar to the endothelial site, ACE2 degrades the 

octapeptide Ang II by removing a single amino acid from the C-terminal end of the peptide to 

generate the heptapeptide Ang1-7. … ACE2 protects against lung injury by: (a) degrading Ang 

II, which is vasoconstrictive and proapoptotic for lung epithelial cells and profibrotic, and (b) by 
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producing the peptide Ang1-7, which inhibits the actions of Ang II through binding to the MAS 

receptor. In support of this protective role for ACE2, pharmaceutical preparations of 

recombinant ACE2, when administered to experimental animals, protect against lung cell death, 

inhibit acute lung injury and prevent lung fibrosis after chronic injury to the lungs. As further 

evidence, the application of a specific competitive inhibitor of ACE2, DX600, to primary cultures 

of isolated ACEs increases the level of Ang II released into the serum-free culture medium by 

autocrine mechanisms, reduces the amount of released Ang1-7 and, importantly, induces 

apoptosis inhibitable by the AT1 receptor blocker.  

 

Thus, functional ACE2 normally expressed by alveolar epithelial cells can be viewed as a 

critical survival factor for these lung cells. In addition, the enzymatic product of ACE2, the 

Ang1-7, itself protects against lung cells death by antagonizing that actions of Ang II.  

 

As Simoes e Silva et al note  

 

First, two independent research groups reported simultaneously in 2000 the existence and 

characterization of an enzyme homologue to ACE, the ACE2, which was established later as the 

main Ang-(1-7)-forming enzyme.  

 

Second, … the G-protein coupled Mas is a functional receptor for Ang- (1-7).  

 

Thus, Ang-(1-7) is now considered a biologically active member of the RAS, which binds to Mas 

inducing many beneficial actions, such as vasodilation, inhibition of cell growth, anti-thrombosis 

and antiarrhythmogenic effects. Ang-(1-7) is produced mainly through the action of ACE2, 

which has approximately 400-fold less affinity to Ang I than to Ang II.  

 

Therefore, Ang II is the major substrate for Ang- (1-7) synthesis. ACE2 can also form Ang- (1-7) 

less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1-7) formation. It 

is important to highlight the key role of ACE2 in this new concept of the RAS since it degrades 

the vasoconstrictive/ proliferative peptide Ang II to form the vasodilator/ antiproliferative 

heptapeptide Ang-(1-7). This is a strategic finding that may be exploited for therapeutic purposes  
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AT1AT2ACE2

ANG 1-7

ANG 1-9

ANG II

ANG I

Angiotensinogen

ANG I

MAS/G

ACE2

ACE2

ACE

• Cell Death
• Fibrosis
• Injury
• Vasoconstriction
• Hypertension
• Coagulopathy

• Cell Protection
• Coagulation
• Vasodilation

 
 

 

ACE2R are cell surface proteins that bind ACE2, the angiotensin enzyme 2. There are two noted 

ACE2Rs recognized.  

 

The following Table summarizes all of the above elements in some detail. 
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Protein Function Location 

ACE23 

 

The protein encoded by this gene belongs to the angiotensin-

converting enzyme family of dipeptidyl carboxydipeptidases and 

has considerable homology to human angiotensin 1 converting 

enzyme. This secreted protein catalyzes the cleavage of 

angiotensin I into angiotensin 1-9, and angiotensin II into the 

vasodilator angiotensin. ACE2 is known to be expressed in 

various human organs, and its organ- and cell-specific 

expression suggests that it may play a role in the regulation of 

cardiovascular and renal function, as well as fertility.  

 

In addition, the encoded protein is a functional receptor for the 

spike glycoprotein of the human coronavirus HCoV-NL63 and 

the human severe acute respiratory syndrome coronaviruses, 

SARS-CoV and SARS-CoV-2, the latter is the causative agent of 

coronavirus disease-2019 (COVID-19). Multiple splice variants 

have been found for this gene and the dACE2 (or MIRb-ACE2) 

splice variant has been found to be interferon inducible 

 

Xp22.2 

 
3 https://www.ncbi.nlm.nih.gov/gene/59272 

 

 

https://www.ncbi.nlm.nih.gov/gene/59272
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Protein Function Location 

ACE4 This gene encodes an enzyme involved in blood pressure 

regulation and electrolyte balance. It catalyzes the conversion of 

angiotensin I into a physiologically active peptide angiotensin II. 

Angiotensin II is a potent vasopressor and aldosterone-

stimulating peptide that controls blood pressure and fluid-

electrolyte balance.  

 

This angiotensin converting enzyme (ACE) also inactivates the 

vasodilator protein, bradykinin. Accordingly, the encoded 

enzyme increases blood pressure and is a drug target of ACE 

inhibitors, which are often prescribed to reduce blood pressure. 

This enzyme additionally plays a role in fertility through its 

ability to cleave and release GPI-anchored membrane proteins in 

spermatozoa. Many studies have associated the presence or 

absence of a 287 bp Alu repeat element in this gene with the 

levels of circulating enzyme.  

 

This polymorphism, as well as mutations in this gene, have been 

implicated in a wide variety of diseases including cardiovascular 

pathophysiologies, psoriasis, renal disease, stroke, and 

Alzheimer's disease.  

 

Regulation of the homologous ACE2 gene may be involved in 

progression of disease caused by several human 

coronaviruses, including SARS-CoV and SARS-CoV-2. 

Alternative splicing results in multiple transcript variants 

encoding both somatic (sACE) and male-specific testicular 

(tACE) isoforms. 

 

17q23.3 

Ang I5 Angiotensin I is a ten amino acid peptide formed by renin 

cleavage of angiotensinogen. Angiotensin I has no direct 

biological function except that high levels can stimulate 

catecholamine production. It is metabolized to its biologically 

active byproduct angiotensin II, a potent vasoconstrictor, by 

angiotensin converting enzyme (ACE) through cleavage of the 

two terminal amino acids. It has a role as a neurotransmitter agent 

and a human metabolite. It is a tautomer of an angiotensin I 

dizwitterion. 

 

 

 
4 https://www.ncbi.nlm.nih.gov/gene/1636 

 
5 https://pubchem.ncbi.nlm.nih.gov/compound/Angiotensin-I 

 

https://www.ncbi.nlm.nih.gov/gene/1636
https://pubchem.ncbi.nlm.nih.gov/compound/Angiotensin-I
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Protein Function Location 

Ang II6 an octapeptide that is a potent but labile vasoconstrictor. it is 

produced from angiotensin i after the removal of two amino acids 

at the c-terminal by angiotensin converting enzyme. the amino 

acid in position 5 varies in different species. to block 

vasoconstriction and hypertension effect of angiotensin ii, 

patients are often treated with ace inhibitors or with angiotensin ii 

type 1 receptor blockers. 

 

 

Ang 1-97 Angiotensin (1-9) is a nine amino acid peptide which is formed 

when angiotensin converting enzyme 2 (ACE2) hydrolyzes the 

carboxy terminal leucine from angiotensin I. It is an anti-cardiac 

hypertrophy agent.  

 

It has a role as a human metabolite, a rat metabolite, an 

antihypertensive agent and a cardioprotective agent. It is a 

tautomer of an angiotensin (1-9) dizwitterion. 

 

 

Ang 1-78 Ile(5)-angiotensin II (1-7) is an angiotensin compound consisting 

of the linear heptapeptide sequence L-Asp-L-Arg-L-Val-L-Tyr-L-

Ile-L-His-L-Pro.  

 

It has a role as a vasodilator agent. It is a tautomer of an 

Ile(5)-angiotensin II (1-7) dizwitterion. 

 

 

Mas9 This gene encodes a class I seven-transmembrane G-protein-

coupled receptor. The encoded protein is a receptor for 

angiotensin-(1-7) and preferentially couples to the Gq protein, 

activating the phospholipase C signaling pathway. The encoded 

protein may play a role in multiple processes including 

hypotension, smooth muscle relaxation and cardioprotection by 

mediating the effects of angiotensin-(1-7). 

 

6q25.3 

AT1 or 

AGTR110 

 

Angiotensin II is a potent vasopressor hormone and a primary 

regulator of aldosterone secretion. It is an important effector 

controlling blood pressure and volume in the cardiovascular 

system. It acts through at least two types of receptors. This gene 

encodes the type 1 receptor which is thought to mediate the major 

cardiovascular effects of angiotensin II. This gene may play a 

role in the generation of reperfusion arrhythmias following 

restoration of blood flow to ischemic or infarcted myocardium. It 

was previously thought that a related gene, denoted as AGTR1B, 

existed; however, it is now believed that there is only one type 1 

receptor gene in humans. Alternative splicing of this gene results 

in multiple transcript variants. 

 

3q24 
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Protein Function Location 

AT2 or 

ATGR211 

 

The protein encoded by this gene belongs to the G-protein 

coupled receptor 1 family, and functions as a receptor for 

angiotensin II. It is an intergral membrane protein that is highly 

expressed in fetus and in neonates, but scantily in adult tissues, 

except brain, adrenal medulla, and atretic ovary. This receptor 

has been shown to mediate programmed cell death and this 

apoptotic function may play an important role in developmental 

biology and pathophysiology. Mutations in this gene are been 

associated with X-linked cognitive disability. Severe Acute 

Respiratory Syndrome Coronavirus (SARS-CoV) and SARS-

CoV-2 infection results in down-regulation of angiotensin 

converting enzyme-2 (ACE2) receptors, the effects of which, 

triggers serious inflammatory lesions in the tissues involved, 

primarily in the lungs. The inflammatory reaction appears to be 

mediated by angiotensin II derivatives, including the 

angiotensin AT2 receptor which has been found to be 

upregulated in bronchoalveolar lavage samples from 

Coronavirus disease 2019 (COVID19) patients 

 

Xq23 

 

We can further summarize these as follows12: 

 

Coronavirus replication is initiated by the binding of S protein to the cell surface receptor(s). 

The S protein is composed of two functional domains, S1 (bulb) which mediates receptor binding 

and S2 (stalk) which mediates membrane fusion. Specific interaction between S1 and the cognate 

receptor triggers a drastic conformational change in S2, leading to fusion between the virus 

envelope and the cellular membrane and release of the viral nucleocapsid into the host cell 

cytosol. Receptor binding is the major determinant of the host range and tissue tropism for a 

coronavirus.  

 

Some human coronaviruses (HCoVs ) have adopted cell surface enzymes as receptors, 

angiotensin converting enzyme 2 (ACE2) for SARS-CoV-1 and HCoV NL63. The receptor-

bound S protein is activated by cleavage into S1 and S2, mediated by one of two of two host 

 
6 https://pubchem.ncbi.nlm.nih.gov/compound/172198 

 
7 https://pubchem.ncbi.nlm.nih.gov/compound/71745056 

 
8 https://pubchem.ncbi.nlm.nih.gov/#query=ang%201-7 

 
9 https://www.ncbi.nlm.nih.gov/gene/4142 

 
10 https://www.ncbi.nlm.nih.gov/gene/185 

 
11 https://www.ncbi.nlm.nih.gov/gene/186 

 
12 https://pubchem.ncbi.nlm.nih.gov/pathway/Reactome:R-HSA-9678110 

 

https://pubchem.ncbi.nlm.nih.gov/compound/172198
https://pubchem.ncbi.nlm.nih.gov/compound/71745056
https://pubchem.ncbi.nlm.nih.gov/#query=ang%201-7
https://www.ncbi.nlm.nih.gov/gene/4142
https://www.ncbi.nlm.nih.gov/gene/185
https://www.ncbi.nlm.nih.gov/gene/186
https://pubchem.ncbi.nlm.nih.gov/pathway/Reactome:R-HSA-9678110
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proteases, the endosomal cysteine protease cathepsin L and another trypsin like serine 

protease. Type II transmembrane serine proteases TMPRSS2 and TMPRSS11D have also been 

implicated in the activation of S protein of SARS-CoV-1. Host factors may play additional roles 

in viral entry (not annotated here).  

 

Valosin containing protein (VCP) contributes by a poorly understood mechanism to the release 

of coronavirus from early endosomes. Host factors may also restrict the attachment and entry of 

HCoV. Some interferon inducible transmembrane proteins (IFITMs) exhibited broad spectrum 

antiviral functions against various RNA viruses including SARS-CoV-1 while others may 

facilitate HCoV entry into host cells. 

 

Now Etelvino et al have noted: 

 

The renin-angiotensin system is an important component of the central and humoral mechanisms 

of blood pressure and hydro-electrolytic balance control. Angiotensin II is a key player of this 

system.  

 

Twenty-five years ago the first manuscripts describing the formation and actions of another 

peptide of the RAS, angiotensin-(1-7), were published. Since then several publications have 

shown that angiotensin-(1-7) is as pleiotropic as angiotensin II, influencing the functions of 

many organs and systems. The identification of the ACE homologue ACE2 and, a few years later, 

Mas, as a receptor for angiotensin-(1-7) contributed a great deal to establish this peptide as a 

key player of the RAS. Most of the actions of angiotensin-(1-7) are opposite to those described 

for angiotensin II.  

 

This has led to the concept of two arms of the RAS: 

 

one comprising ACE/AngII/AT1R and  

 

the other ACE2/Ang-(1-7)/Mas.  

 

More recently, we have described the identification of a novel component of the RAS, 

alamandine, which binds to the Mas-related G protein coupled receptor D. This peptide is 

formed by decarboxylation of the Asp residue of angiotensin-(1-7), leading to the formation of 

Ala as the Nterminal amino acid. Alternatively, it can be formed by hydrolysis of Ang A, by 

ACE2. Its effects include vasorelaxation, central effects similar to those produced by 

angiotensin-(1-7), blunting of isoproterenol-induced heart fibrosis, and anti-hypertensive action 

in SHR.  

 

The putative enzyme responsible for alamandine formation from angiotensin-(1-7) is under 

investigation. The identification of this novel component of the RAS opens new venues for 

understanding its physiological role and opens new putative therapeutic possibilities for treating 

cardiovascular diseases.  

 

As Bader et al have noted: 
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The Mas-related G protein–coupled receptors (Mrgprs or Mas-related genes) comprise a 

subfamily of receptors named after the first discovered member, Mas.  

 

For most Mrgprs, pruriception seems to be the major function based on the following 

observations:  

 

1) they are relatively promiscuous in their ligand specificity with best affinities for itch-inducing 

substances;  

 

2) they are expressed in sensory neurons and mast cells in the skin, the main cellular 

components of pruriception; and  

 

3) they appear in evolution first in tetrapods, which have arms and legs necessary for scratching 

to remove parasites or other noxious substances from the skin before they create harm.  

 

Because parasites coevolved with hosts, each species faced different parasitic challenges, which 

may explain another striking observation, the multiple independent duplication and expansion 

events of Mrgpr genes in different species as a consequence of parallel adaptive evolution. Their 

predominant expression in dorsal root ganglia anticipates additional functions of Mrgprs in 

nociception.  

 

Some Mrgprs have endogenous ligands, such as b-alanine, alamandine, adenine, RF-amide 

peptides, or salusin-b. However, because the functions of these agonists are still elusive, the 

physiologic role of the respective Mrgprs needs to be clarified.  

 

The best studied Mrgpr is Mas itself. It was shown to be a receptor for angiotensin-1–7 and to 

exert mainly protective actions in cardiovascular and metabolic diseases. This review 

summarizes the current knowledge about Mrgprs, their evolution, their ligands, their possible 

physiologic functions, and their therapeutic potential.  

 

We detail some of these functions in the diagram below. 
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TGFB1TF
TF CYP11B2

AldosteroneSterone

ACE2

BDKRB2BDKRB1

Prostaglandin

https://www.wikipathways.org/index.php/Pathway:WP554#nogo2  
 

 

Now we further know from Bader et al that the MAS activated pathway is as shown below13: 

 

 
13 From Bader et al we note: The most important known signaling pathways of Mas involve phospholipase A (PLA) 

to generate arachidonic acid (AA) and phosphoinositide 3 kinase (PI3K) and AKT to activate eNOS by 

phosphorylation at serine 1177 and dephosphorylation at threonine 495. Ang-(1–7), AVE0991, CGEN-856S, and 

angioprotectin have been shown to activate these pathways and A-779 antagonizes these actions. Ang-(1–7) also 

activates forkhead box protein O1 by dephosphorylation at serine 236. The ligands for the PLA and PI3K pathways 

(other than CGEN-856S), however, do not activate a phospholipase C (PLC)/Ca2+ signaling pathway observed in 

Mas-overexpressing cells, which in some studies were additionally transfected with promiscuous G proteins. This 

pathway is activated by the ligands neuropeptide FF (NPFF), AR234960, MPF7, and CGEN-856S and blocked by 

AR244555. Thus, different Mas ligands activate distinct signaling pathways, a phenomenon called biased agonism. 
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Akt
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see Bader et al, Mas and Its Related G Protein–Coupled Receptors, Mrgprs, 

Pharmacol Rev        –      October 2014

FOXO1

PLA2

Arachidonic Acid

 
 

3.3 ACE2 VARIANTS 

 

ACE2 has many variants. As Sorokina et al have noted: 

 

To this end, we collected information regarding naturally-occurring variants of the Angiotensin-

converting enzyme 2 (ACE2), an epithelial receptor that both SARS-CoV and SARS-CoV-2 use to 

enter the host cells. We built 242 structural models of variants of human ACE2 bound to the 

receptor binding domain (RBD) of the SARS-CoV-2 surface spike glycoprotein (S protein) and 

refined their interfaces with HADDOCK.  

 

Our dataset includes 140 variants of human ACE2 representing missense mutations found in 

genome-wide studies, 39 mutants with reported effects on the recognition of the RBD, and 63 

predictions after computational alanine scanning mutagenesis of ACE2-RBD interface residues. 

This dataset will help accelerate the design of therapeutics against SARS-CoV-2, as well as 

contribute to prevention of possible future coronaviruses outbreaks.  

 

There are a multiplicity of ACE2 variants. The following Table is from that source. It depicts 

some of the more common variants. The details are in the reference14. 

 

 
14 see Sorokina et al, Mutations reported in the literature mappable on the cryo-EM structure. Table includes 

energetic calculations with HADDOCK. vdW – van der Waals interaction score; Elec – electrostatic interaction 

score; Desol – desolvation score; BSA – buried surface area; a.u. – arbitrary units of energy; Effect – The measured 

biochemical effect on the interaction with the SARS-CoV spike glycoprotein. A-No effect on interaction with SARS-

CoV spike glycoprotein; B-Slightly inhibits interaction with SARS-CoV spike glycoprotein; C-Strongly inhibits 

interaction with SARS-CoV spike glycoprotein.; D-Abolishes interaction with SARS-CoV spike glycoprotein; E-

Inhibits interaction with SARS-CoV spike glycoprotein.; F-About 95% loss of angiotensin I cleavage; G-Complete 

loss of enzyme activity; H- more than 50% loss of angiotensin I cleavage. *also included in the Alanine scanning 

mutagenesis data 
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− ± − ± − ± ± ± 

− ± − ± − ± − ± ± 

− ± − ± − ± − ± ± 

− ± − ± − ± ± ± 

− ± − ± − ± ± ± 

− ± − ± − ± − ± ± 

 

One can see that many are single nucleic acid changes. This may become a challenge if one must 

fit the mutated spikes to the variant ACE2. This is also a challenge since we generally cannot 

ascertain the ACE2 configuration when testing for spike presence of infection. 

 

 
15 See Vangone et al. The Haddock Score is a tool to assess binding of proteins to ligands.  
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We shall examine these in detail in the next section. ACE2 has substantial variability and thus 

should be considered as an integral elements in addressing the virus inhibition. 
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4 VARIANTS 

 

We have been seeing an accumulation of COVID variants. We have examined these to some 

degree as they have evolved16. In this section we examine the current literature regarding both 

ACE2 and COVID spike variants. The assumption is that the spike targets ACE2. One must be 

cautious with this assertion since as we see mutations of spike we may very well see changes to 

alternative entry points rather than just ACE2. The current COVID virus has great evolutionary 

aggressiveness and thus we should be concerned by tamping it down as aggressively as we can. 

 

4.1 ACE2 VARIANTS 

 

ACE2 has been seen as a critical control element to counter ACE and its tendency to cause 

hypertension. Ashoor et al have detailed multiple ACE2 variants, they note: 

 

SARS-CoV-2 infectivity is largely determined by the virus Spike protein binding to the ACE2 

receptor. Meanwhile, marked infection rate differences were reported between populations and 

individuals. To understand the disease dynamic, we developed a computational approach to 

study the implications of both SARS-CoV-2 RBD mutations and ACE2 polymorphism on the 

stability of the virus-receptor complex. We used the 6LZG PDB RBD/ACE2 3D model, the 

mCSM platform, the LigPlot+ and PyMol software to analyze the data on SARS-CoV-2 

mutations and ACE variants retrieved from GISAID and Ensembl/GnomAD repository.  

 

We observed that out of 351 RBD point mutations, % destabilizes the complex according to 

free energy (∆∆G) differences. We also spotted variations in the patterns of polar and 

hydrophobic interactions between the mutations occurring in out of contact residues. Similarly, 

comparison of the effect on the complex stability of different ACE2 variants showed that the 

pattern of molecular interactions and the complex stability varies also according to ACE2 

polymorphism. We infer that it is important to consider both ACE2 variants and circulating 

SARS-CoV-2 RBD mutations to assess the stability of the virus- receptor association and 

evaluate infectivity. This approach might offers a good molecular ground to mitigate the virus 

spreading … 

 

The interaction ACE2/SARS-CoV-2 occurs through the receptor-binding domain (RBD) 

sequence of the S1 chain of the spike protein. This functional domain is highly prone to 

mutations.  

 

Meanwhile, the human ACE2 receptor gene that is located on chromosome X is highly 

polymorphic with hundreds of genetic variants identified to date in various populations . 

Noteworthy are the ACE2 variants reported in the Chinese populations though few variants 

are highly frequent and the majority of them are very rare .  

 

Interestingly some ACE2 variants was shown to be significantly associated with the onset of 

diseases such arterial hypertension, diabetes mellitus, cerebral stroke, coronary artery disease, 

 
16 https://www.researchgate.net/publication/348248952_COVID-19_Mutations_and_Infectivity 

 

https://www.researchgate.net/publication/348248952_COVID-19_Mutations_and_Infectivity
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heart septal wall thickness and ventricular hypertrophy all considered as comorbidity factors 

of COVID-19. The complexity of the SARS-CoV-2 S protein association with the ACE2 

receptor is highlighted in a number of X-ray crystallography models.  

 

ACE2 variants appear to have the capability to create co-morbidities. Thus, patients with variant 

ACE2 receptors may have a double hit; co-morbidity as well as aggressive COVID attack. In 

effect it may not be that the co-morbidity is the cause but a secondary factor resulting from a 

variant ACE2. They continue: 

 

These are namely the 6LZG (SARS-CoV-2 Spike RBD /ACE2) complex, the 2AJF (SARS-CoV 

Spike RBD /ACE2) complex, the 6M0J (SARS-CoV-2 Spike RBD /ACE2) complex, and the 6VW1 

(chimeric SARS-CoV/SARS-CoV-2 Spike RBD /ACE2 ) complex . These models have different 

resolution and are available at RCBS Protein Data Bank (https://www.rcsb.org/). Studies using 

these models have shown that the affinity of the RBD SARS- CoV-2 to the human ACE2 varies 

between ACE2 genetic variants suggesting that some people might be genetically protected 

where others are susceptible to COVID-19.  

 

Indeed, by measuring the ACE2 affinity for SARS-CoV-2 Spike using docking simulations,.. 

showed that ACE2 variant SP, which is more frequent in Africans and KR more frequent in 

Europeans, are respectively protective and predisposing genetic factors to COVID-19.  

 

Again the science demonstrates why we see increased morbidity and mortality. One must be 

cautious not to conflate social and political issue with the underlying science. We shall see this 

effect again and again. 

 

Meanwhile, other studies denied the association between ACE2 genetic polymorphism and the 

susceptibility to SARS infection and to COVID- . Nevertheless, the virus-host-cell interaction 

involves specific contacts between two structurally defined molecular entities. Therefore, it is 

very likely that the interaction between the SARS-CoV-2 and the human cell surface receptor 

ACE2 and thus the virus infectivity is determined by the genetic variations of both the pathogen 

and the receptor interacting sequences. This can reflect a higher magnitude of complexity in the 

interplay between this new viral pathogen and its human host.  

 

Now as Devaux et al note: 

 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged in Chinese 

people in December 2019 and has currently spread worldwide causing the COVID-19 pandemic 

with more than 150,000 deaths.  

 

In order for a SARS-CoV like virus circulating in wild life for a very long time to infect the 

index case-patient, a number of conditions must be met, foremost among which is the 

encounter with humans and the presence in homo sapiens of a cellular receptor allowing the 

virus to bind.  

 

Recently it was shown that the SARS-CoV-2 spike protein, binds to the human angiotensin I 

converting enzyme 2 (ACE2).  
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This molecule is a peptidase expressed at the surface of lung epithelial cells and other tissues, 

that regulates the renin-angiotensin-aldosterone system. Humans are not equal with respect to 

the expression levels of the cellular ACE2.  

 

Moreover, ACE2 polymorphisms were recently described in human populations. Here we review 

the most recent evidence that ACE2 expression and/or polymorphism could influence both the 

susceptibility of people to SARS-CoV-2 infection and the outcome of the COVID-19 disease. 

Further exploration of the relationship between the virus, the peptidase function of ACE2 and 

the levels of angiotensin II in SARS-CoV-2 infected patients should help to better understand the 

pathophysiology of the disease and the multi-organ failures observed in severe COVID-19 cases, 

particularly heart failure…. 

 

ACE2 limits the adverse vasoconstrictor and profibrotic effects of AngII. The hydrolysis of AngII 

into Ang (1e7) reduces the oxidative stress of AngII on endothelial cerebral arteries. Ang (1e7) 

was reported to have vasodilatory and antifibrotic actions. Disruption of ACE2 results in 

increased AngII levels and impaired cardiac function. Reduced levels of cardiac ACE2 have 

been reported in hypertension (HT) and diabetic heart disease.  

 

Low expression of ACE2 mRNA was associated to HT, dyslipidemia and/or heart failure.  

 

A polymorphism of ACE2 gene was first documented in the Chinese population with three ACE2 

variants (rs4240157, rs4646155, and rs4830542) associated with HT,70e74 in a Nicotine 

Dependence in Teens Canadian cohort rs2074192, rs233575, and rs2158083 mutations were 

significantly associated with pathological variations of blood pressure. 

 

 ACE2 rs21068809 mutation (C > T) has been reported associated with clinical manifestations 

of HT.76 In Indian the study of 246 HT patients and 274 normotensive people indicated an 

association of HT with ACE2 rs21068809 mutation.77  

 

In Brazilian patients, the combination of ACE I/D and ACE2 G8790A polymorphisms revels 

susceptibility to HT.78 The RAAS pathway can also be regulated by a polymorphism in ACE.  

 

In African-American with hypertension an ACE polymorphism was reported.  

 

Here again we see the genetic difference that result in ACE2 changes are the drivers of ethnic 

variations in morbidity and mortality not necessarily some social construct. 

 

Very recently, Cao and colleagues reported the results of a large investigation (1700 variants) of 

coding sequences variants in ACE2 and the allele frequency differences between populations in 

ACE2 gene from the China Metabolic Analytics Project and 1000 Genome Project database and 

other large scale genome databases. They found one variant with a truncation Gln300 in China. 

In addition, they reported 32 variants among which seven hotspot variants in different 

populations.  
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We demonstrate some of the ethnic variations below. It is now well known that the ACE2 

receptor variants are a dominant cause of ethnic variations in infectivity. We present so current 

data for comparison. 

 

Below we show the normalized by race. Note the high incidence amongst Hispanics. This can be 

a result of both ACE2 receptor variants as well as socioeconomic conditions. African Americans 

have the most vulnerable ACE2 receptors but their normalized distribution is substantially lower. 

In contrast Asians have a protective ACE2 receptor and this is exhibited below. 

 

 
 

Now by age we see where the problem is. It is the 18-29 year olds who are the spreaders. The 

80+ are dominated by LTC cases most likely via the 18-29 class. Also the 5-17 year old school 

group has a low relative count. 
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Now Kemenesi et al have examined the variants of ACE with the effective binding domain as 

shown below: 
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The authors then note: 

 

Spike mutations are of special interest due to their possible role in the emergence of variants 

with modified antigenicity. This altered antigenicity may bypass vaccine effectiveness, 

monoclonal therapeutic options, and several others.  

 

A recent study revealed a 0.75% prevalence for Spike deleterious variants by analyzing 146,795 

genome sequences. These deletions were mostly positioned within the N-terminal domain. There 

are several identified Spike mutants rapidly spreading, such as the D614G which is now 

considered as a prevalent SARS-CoV-2 variant all around the world. Sequential rounds of 

evolution in the context of an outbreak situation with an emerging virus was previously reported 

in case of SARS-CoV and during the West African Ebola outbreak. It is considered as an 

adaptation to the new human host and may lead to significant increase in the prevalence of 

certain variants. Dominant mutations may drive the main scenario of an outbreak, but recessive 

mutations are also present, although the identification of the latter is highly challenging.  

 

The general understanding of SARS-CoV-2 evolution during the current pandemic situation may 

reveal future scenarios and can facilitate therapeutic research directions and strategies. We 

identified a major deletion in the RBD of the Spike protein and verified an altered receptor 

binding capacity via in silico methods. The variant presented in this study lacks a major part of 

the RBD along with several important AA positions for ACE2 binding.  

 

We therefore hypothesized a weaker receptor binding capacity. The occurrence of such a 

mutation in a natural infection and the recessive nature of this deleterious variant revealed a 

scenario for evolutionary adaptation of the virus within a single host.  

 

The identification of this strain may be of high interest in future studies, involving attenuated 

strains and thereby it may facilitate therapeutic advances. A limitation of our study is the lack of 

infectious isolate, since the virus isolation efforts failed to retrive infectious isolate in vitro. It is 

possibly due to the condition of the sample after multiple freeze-thaw cycles or even due to the 

lower specificity to VeroE6 cell line of this particular deleterious strain. Reverse genetics may be 

used in future studies for in vitro experiments with this deleterious variant to verify in silico data 

and to examine in vitro characteristics.  

 

The most important take-home message of our study is that we need more studies to 

understand main genomic-evolutionary mechanisms of circulating SARS-CoV-2 viruses 

regarding their most powerful evolutionary tool, the recombination.  

 

Sequencing efforts therefore need to be focused on the surveillance of emerging recombinant 

variants, not only tracking nucleotide changes in the genome.  

 

Here, we present a naturally occurring recessive RBD deleterious SARS-CoV-2 variant. Strains 

with altered receptor-binding capacity may be of special interest in future studies in relation to 

vaccine development, therapeutic options or simply for the general understanding of 

evolutionary mechanisms regarding the COVID-19 pandemic.  
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Let us note regarding recombinant viral variants17: 

 

Recombination involves the exchange of genetic material between two related viruses during 

coinfection of a host cell. Viral recombination occurs when viruses of two different parent 

strains coinfect the same host cell and interact during replication to generate virus progeny 

that have some genes from both parents. Recombination generally occurs between members of 

the same virus type (e.g., between two influenza viruses or between two herpes simplex 

viruses). Two mechanisms of recombination have been observed for viruses: independent 

assortment and incomplete linkage. Either mechanism can produce new viral serotypes or 

viruses with altered virulence. 

 

Recombination by Independent Assortment: Recombination by independent assortment can 

occur among viruses with segmented genomes. Genes that reside on different pieces of nucleic 

acid are randomly assorted. This can result in the generation of viruses with new antigenic 

determinants and new host ranges. Development of viruses with new antigenic determinants 

through independent assortment is called antigenic shift. 

 

Recombination of Incompletely Linked Genes: Genes that reside on the same piece of nucleic 

acid may undergo recombination. The closer two genes are together, the rarer is 

recombination between them (partial linkage). 

 

Phenotypic Variation from Recombination: Development of viruses with new antigenic 

determinants by either type of recombination may allow viruses to infect and cause disease in 

previously immune hosts. 

 

Thus variants can come about by a variety of means. Insertions, deletions, and very powerfully 

via recombination.  

 

4.2 COVID VARIANTS 

 

COVID-19 variants, s, are being understood and identified in the early stages. The fundamental 

issue is to stop the viral propagation before it mutates to an ever more aggressive form. The 

mutations follow the same means as any other genetic structure but since it is a single stranded 

mRNA it is susceptible to the most aggressive forms. From the CDC and the recent NYC 

B.1.526 variant from West et al we have18: 

 

 
17 https://www.ncbi.nlm.nih.gov/books/NBK8439/ 

 
18 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html It should be 

noted that CDC data is chronically late often incomplete. There are now evolving multiple independent registries for 

variants which may become more current and more reliable. We have found in our experience and in our opinion 

that the CDC across the board has been grossly deficient in reporting correctly, timely and in a useable manner.   

 

https://www.ncbi.nlm.nih.gov/books/NBK8439/
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
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Name Name 

Nextstrain 

First 

Detected 

Cases 

in US 

Countries 

Reporting 

Key Mutations Transmissibility 

Rate 

B.1.1.7  20I/501Y.V1 United 

Kingdom 

Y 70 69/70 deletion, 

144Y deletion, 

N501Y, 

A570D, 

D641G, 

P681H 

~50% increase 

P.1  20H/501Y.V3 Japan 

Brazil 

Y >4 E484K 

K417N/T 

N501Y 

D614G 

Not determined 

B.1.351   20H/501.V2 South 

Africa 

Y >30 K417N, 

E484K, 

N501Y, 

D614G 

Not Determined 

B.1.526  New 

York 

Y >4 L5F, T95I, 

D253G, 

E484K or 

S477N, 

D614G, and 

A701V.  

 

Not Determined 

 

    B.1.1.7: In the United Kingdom (UK), a variant of SARS-CoV-2 known as B.1.1.7 emerged. 

This variant carries a large number of mutations and has since been detected around the world, 

including in the United States (US). This variant was first detected in the US at the end of 

December 2020. In January 2021, scientists from the UK reported early evidence that suggests 

the B.1.1.7 variant may be associated with an increased risk of death compared with other 

variants. More studies are needed to confirm this finding. 

 

    B.1.351: In South Africa, another variant of SARS-CoV-2 known as B.1.351 emerged 

independently of B.1.1.7. According to a non-peer-reviewed preprint article, this variant shares 

some mutations with B.1.1.7. Cases attributed to B.1.351 have been detected outside of South 

Africa, and this variant was first detected in the US at the end of January 2021. Preliminary 

evidence from non-peer-reviewed publications suggests that the Moderna mRNA-1273 vaccine 

currently used in the US may be less effective against this variant, but additional studies are 

needed. 

 

    P.1: In Brazil, a variant of SARS-CoV-2 known as P.1 emerged; it was first identified in 

January 2021 in travelers from Brazil who arrived in Japan. This variant was detected in the US 

at the end of January 2021. The P.1 variant has 17 unique mutations, including three in the 

receptor binding domain of the spike protein (K417T, E484K, and N501Y), according to non-

peer-reviewed preprint articles. There is evidence to suggest that some of the mutations in the 
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P.1 variant may affect the ability of antibodies (from natural infection or vaccination) to 

recognize and neutralize the virus, but additional studies are needed. 

 

From West et al we now have what they are calling the New York Variant: 

 

Wide-scale SARS-CoV-2 genome sequencing is critical to monitoring and understanding viral 

evolution during the ongoing pandemic. Variants first detected in the United Kingdom, South 

Africa, and Brazil have spread to multiple countries. We have developed a software tool, Variant 

Database (VDB), for quickly examining the changing landscape of spike mutations. Using this 

tool, we detected an emerging lineage of viral isolates in the New York region that shares 

mutations with previously reported variants. The most common sets of spike mutations in this 

lineage (now designated as B.1.526) are  

 

L5F, T95I, D253G, E484K or S477N, D614G, and A701V.  

 

This lineage appeared in late November 2020, and isolates from this lineage account for ~25% 

of coronavirus genomes sequenced and deposited from New York during February 2021.  

 

They also present the following Table of other isolates: 

 
Pattern Number of 

isolates 

Top Locations First collection 

date 

L5F Τ95Ι D253G Ε484Κ D614G A701V 243 US(240;NY 

235) 

12/16/2020 

E484KD614G V1176F 235 Brazil(132), 

US(40) 

4/15/2020 

W152L Ε484Κ D614G G769V 49 US(32) 11/1/2020 

Ε484Κ D614G Ρ681Η 37 US(37;MD27) 11/18/2020 

R102I F157LV367F Ε484Κ Q613H P681R 36 England(35) 12/27/2020 

Q52RA67V H69-V7O-Y144- Ε484Κ D614G 

Q677H F8881 

36 England(22) 12/15/2020 

 

An additional view of variants is shown below19: 

 

 
19 https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al. 

 

https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al
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Pango lineages 

(by Rambaut 

et al.)  

Notes to 

pango 

lineages (see 

Alm et al.) 

Nextstrain 

clades, 2021 

GISAID 

clades  

Notable variants 

A.1–A.6   19B S contains "reference 

sequence" 

WIV04/2019[1]  

B.3–B.7, B.9, 

B.10, B.13–

B.16 

  19A L   

O[a]    

B.2   V   

B.1 B.1.5–B.1.72 20A G Lineage B.1 in the 

Rambaut et al. system  

B.1.9, B.1.13, 

B.1.22, 

B.1.26, B.1.37 

GH   

B.1.3–B.1.66 20C Includes CAL.20C[ 

20G Predominant in US 

generally, Jan '21[  

20H Includes B.1.351 aka 

20H/501Y.V2 or 

501.V2 lineage  

B.1.1 20B GR Includes B.1.1.207  

20D Includes P.1 and P.2[ 

20F   

20I Includes lineage B.1.1.7 

aka VOC-202012/01 or 

20I/501Y.V1  

B.1.177 20E  GV Derived from 20A  

  

https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFRambaut_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFRambaut_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFRambaut_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFAlm_et_al.
https://en.wikipedia.org/wiki/GISAID
https://en.wikipedia.org/wiki/GISAID
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-Zhukova-1
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-Zhukova-1
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-Zhukova-1
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-O/GV-4
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFRambaut_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#CITEREFRambaut_et_al.
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-SoCalPreprint-5
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-SoCalPreprint-5
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.351
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.351
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.351
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.1.207
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.1.7_/_Variant_of_Concern_202012/01
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.1.7_/_Variant_of_Concern_202012/01
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#Lineage_B.1.1.7_/_Variant_of_Concern_202012/01
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-nextstrain-amendation-3
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-O/GV-4
https://en.wikipedia.org/wiki/Variants_of_SARS-CoV-2#cite_note-nextstrain-amendation-3
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5 PROTEIN MODELLING 

 

Protein modelling is a highly complex and evolving process. Knowing the protein sequence is 

generally the easy part. Finding its three-dimensional structure is complex. One can recall that 

the one dimensional structure is merely a sequence of amino acids. The two dimensional 

structure is the effect of hydrogen bonds between nucleic acids allowing them to form helices or 

sheets, namely long strands of matched pairs via hydrogen bonding (O-H bonds) and then the 

three dimensional structure amongst helices, sheets, and plain runs of nucleic acids. Now add to 

this a second protein with similar structure and we have the chance for protein-protein bonding.  

 

5.1 SECONDARY STRUCTURES 

 

Secondary structures are often key to binding. They are the helices and ribbons that establish the 

ultimate backbone for the subsequent three-dimensional folding. Graphically the two 

dimensional flat-model including strings can be exemplified as below: 

 

 
 

 

Predicting this structure is the next step after having the one dimensional structure. Now as 

Lasfar and Bouden have noted: 

 

The prediction of the secondary structure of proteins is one of the most studied problems in 

computational biology.  

 

However, the accuracy of the predicted secondary structure is insufficient for practical utility.  
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Indeed, this is the necessary first step. The issue is that the problem is generated by having just a 

nucleic acid sequence and must then determine where the helices and ribbons are and how large 

they may be. But in anticipation of our analysis, we are not starting at that point for we indeed 

have both the two and three dimensional structure of the wild type (Wuhan virus) as well as 

various mutant variants. They continue: 

 

In this paper, we propose an algorithmic approach based on Hidden Markov Models (HMM) to 

model the problem of prediction. Therefore, HMM are often used for data mining in 

bioinformatics. In this research, we have built a HMM that models the prediction problem of 

protein secondary structure. Moreover, two procedures for estimating the probability 

parameters were performed by the Maximum Likelihood Estimation (MLE) of protein sequences 

from a public database (Brookhaven PDB).  

 

Finally, a new prediction approach based on a posteriori probability of hidden regimes has been 

implemented. Our model appears to be very efficient on single sequences, with a score of 66.6% 

by comparing the first results obtained with the real secondary sequence and encouraging for an 

improvement of the system …  

 

The initial idea was to propose a new system for predicting the secondary structure of proteins 

based on the model of hidden Markov chains. The first HMM implantation applied to the 

prediction of secondary protein structure was carried out in 1993 by K. Asai et al. However, the 

precision of the unsatisfactory prediction of this approach gave rise to other work based on 

different methods. So it seemed reasonable to think that their decoding path (the viterbi 

algorithm) is inappropriate for this kind of problem. A new approach was then needed to better 

predict the sequence of secondary structures: the hidden state of posteriori probability decoding 

approach was proposed in this direction.  

 

Moreover, work on the construction of a well-parameterized HMM model was carried out in 

parallel: the development of the two probability distribution estimation procedures were carried 

out by the maximum likelihood estimators. In addition, the overfitting problem was solved by the 

Laplace rule in order to regularize the resulting probabilities. Finally, this new approach of 

prediction makes it possible to obtain very encouraging results with a test sequence of small size. 

However, even if the approach seems interesting, the system still needs to be developed to deal 

with large sequence sets. The research perspectives consist of verifying, confirming the proposed 

HMM model on other protein families and using other hybrid data mining techniques to obtain 

higher prediction accuracy.  

 

We believe that we can utilize a backward propagation approach using HMM learning 

algorithms20. 

 

5.2 STRUCTURE PREDICTION 

 

 
20 see https://www.researchgate.net/publication/344565580_Correlation_vs_Causation_The_Perils_of_AI In this 

paper we do discuss the strength and weakness of these approaches. With COVID-19 we have a reasonable set of 

baseline variants which we will examine shortly. Thus we are looking for most likely not dispositive causative 

factors. 

https://www.researchgate.net/publication/344565580_Correlation_vs_Causation_The_Perils_of_AI
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Moving from two dimensional to full structure is ever so more difficult, As Senior et al note: 

 

Protein structure prediction can be used to determine the three-dimensional shape of a protein 

from its amino acid sequence1. This problem is of fundamental importance as the structure of a 

protein largely determines its function; however, protein structures can be difficult to determine 

experimentally. Considerable progress has recently been made by leveraging genetic 

information. It is possible to infer which amino acid residues are in contact by analysing 

covariation in homologous sequences, which aids in the prediction of protein structures3.  

 

Here we show that we can train a neural network to make accurate predictions of the 

distances between pairs of residues, which convey more information about the structure than 

contact predictions. Using this information, we construct a potential of mean force4 that can 

accurately describe the shape of a protein.  

 

We find that the resulting potential can be optimized by a simple gradient descent algorithm to 

generate structures without complex sampling procedures.  

 

The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer 

homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 

(CASP13)—a blind assessment of the state of thefield—AlphaFold created high-accuracy 

structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free 

modelling domains, whereas the next best method, which used sampling and contact information, 

achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable 

advance in protein-structure prediction. We expect this increased accuracy to enable insights 

into the function and malfunction of proteins, especially in cases for which no structures for 

homologous proteins have been experimentally determined  

 

What we believe is still lacking is a reasonably acceptable metric for effectiveness, such as 

binding affinity. Now as Yang et al (2020) have noted: 

 

The prediction of interresidue contacts and distances from coevolutionary data using deep 

learning has considerably advanced protein structure prediction.  

 

Here, we build on these advances by developing a deep residual network for predicting 

interresidue orientations, in addition to distances, and a Rosetta-constrained energy-

minimization protocol for rapidly and accurately generating structure models guided by these 

restraints.  

 

In benchmark tests on 13th Community-Wide Experiment on the Critical Assessment of 

Techniques for Protein Structure Prediction (CASP13)- and Continuous Automated Model 

Evaluation (CAMEO)-derived sets, the method outperforms all previously described 

structureprediction methods. Although trained entirely on native proteins, the network 

consistently assigns higher probability to de novodesigned proteins, identifying the key fold-

determining residues and providing an independent quantitative measure of the “ideality” of a 

protein structure. The method promises to be useful for a broad range of protein structure 

prediction and design problems …  
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The accurate prediction of the structure of de novo-designed proteins in the complete absence of 

coevolutionary signal has implications for both the model and protein design generally.  

 

First, the model is clearly learning general features of protein structures.  

 

This is not surprising given that the direct couplings derived by the coevolutionary analysis on a 

protein family are the 2-body terms in a generative model for the sequences in the family, and 

thus training on these couplings for a large number of protein families is equivalent to training 

on large sets of protein sequences for each structure in the training set.  

 

From the design point of view, we have asserted previously that de novo-designed proteins are 

“ideal” versions of naturally occurring proteins; the higher probability assigned by the model to 

designed proteins compared to naturally occurring proteins makes this assertion quantitative. 

Remarkably, similar “ideal” features appear to have been distilled from native protein analysis 

by expert protein designers to be incorporated into designed proteins, and extracted by deep 

learning in the absence of any expert intervention.  

 

Our finding that the model provides information on the contribution of each amino acid in a 

designed protein to the determination of the fold by the sequence suggests the model should be 

directly applicable to current challenges in de novo protein design.  

 

This  

 

representation we believe still lacks the completeness required. One must remember that in the 

binding domain, where we have two proteins and we seek to find the binding domain as well as 

some metric representing the strength of that binding, we need to begin perhaps in another 

direction. 

 

We have further examined the approach taken from Lee et al: 

 

Predicting a protein’s structure from its amino acid sequence remains an unsolved problem after 

several decades of efforts. If the query protein has a homolog of known structure, the task is 

relatively easy and high-resolution models can often be built by copying and refining the 

framework of the solved structure.  

 

However, a template-based modeling procedure does not help answer the questions of how and 

why a protein adopts its specific structure. In particular, if structural homologs do not exist, or 

exist but cannot be identified, models have to be constructed from scratch. This procedure, 

called ab initio modeling, is essential for a complete solution to the protein structure prediction 

problem; it can also help us understand the physicochemical principle of how proteins fold in 

nature.  

 

Currently, the accuracy of ab initio modeling is low and the success is generally limited to small 

proteins (<120 residues). With the help of co-evolution based contact map predictions, success 
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in folding larger-size proteins was recently witnessed in blind testing experiments. In this 

chapter, we give a review on the field of ab initio structure modeling.  

 

Our focus will be on three key components of the modeling algorithms: energy function 

design, conformational search, and model selection. Progress and advances of several 

representative algorithms will be discussed. …  

 

Successful ab initio modeling from amino acid sequence alone is considered the “Holy Grail” 

of protein structure prediction , since this will mark an eventual and complete solution to the 

problem. 

 

Again, our interest is not "ab initio" but an a posteriori approach, starting with the wild type 

Wuhan virus. The authors continue: 

 

 In addition to the generation of 3D structures, ab initio modeling can also help us understand 

the underlying principles of how proteins fold in nature; this could not be done by the template-

based modeling approaches which build 3D models by copying and refining the framework of 

other solved structures. An ideal approach to ab initio modeling would be to treat atoms in a 

protein as interacting particles according to an accurate physics-based potential, and fold the 

protein by solving Newton’s equations of motion in each step of movements. A number of 

molecular dynamics simulations were carried out along this line of approach by using the classic 

CHARMM and AMBER force fields. Although the MD based simulation is very important for the 

study of protein folding, the success in the viewpoint of structure prediction is quite limited.  

 

One reason is the prohibitive computing demand for a normal size protein. On the other hand, 

knowledge-based (or hybrid knowledge- and physics-based) approaches making use of Monte 

Carlo sampling schemes appear to be progressing rapidly, producing many examples of 

successful low-to-medium accuracy models often with correct topology for small and medium 

size proteins. Although very rare, successful higher resolution models (<2–3 Å in Ca-RMSD) 

have been witnessed in blind experiments.  

 

The current state-of-the-art ab initio protein structure prediction methods often utilize as much 

information as possible from known structures, in several different ways.  

 

First, the use of local structure fragments directly excised from the PDB structures helps 

reduce the degrees of freedom and the entropy of the conformational search and yet keep the 

fidelity of the native protein structures.  

 

Second, the knowledge-based potential derived from the statistics of a large number of solved 

structures can appropriately grasp the subtle balance of the complicated correlations between 

different sources of energy terms.  

 

With the carefully parameterized knowledge-based potential terms aided by various advances in 

the conformational search methods, the accuracy of ab initio modeling for proteins up to 100–

150 residues has been significantly improved in the last decade.  
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With the help of co-evolution based contact map predictions, an exciting examples has been 

recently reported on a free-modeling target (T0806) up to 258 residues in the most recent 

CASP experiment.  

 

The use of evolutionary models may be helpful especially when one has some initial well 

understood starting point. They continue: 

 

However, such performance is only possible when sufficient number of homologous sequences 

can be obtained to ensure the accuracy of contact predictions: this situation is rare for ab initio 

modeling target proteins that have no homologues in the PDB. For further improvement, 

parallel developments of accurate potential energy functions and efficient optimization methods 

are both necessary. That is, separate examination/development of potential energy functions is 

important; meanwhile, systematic benchmarking of various conformational search methods 

should be performed, so that the advantages as well as the limitations of available search 

methods can be explored separately.  

 

Currently, the ab initio modeling methods solely based on the physicochemical principles of 

interaction are still far behind, in terms of their modeling speed and accuracy, compared with 

the methods utilizing bioinformatics and knowledge-based information. However, the physics-

based atomic potentials have recently demonstrated their potential in refining the detailed 

packing of side-chain atoms and peptide backbones.  

 

Development of composite methods using both knowledge-based and physics-based energy terms 

should represent a promising approach to the problem of ab initio modeling. It is important to 

acknowledge that with the progress in structure genomics and structural biology, the number of 

experimental structures in the PDB has been rapidly increasing, significantly extending the 

scope of the template-based protein structure predictions. Nevertheless, the traditional 

comparative modeling approaches can only yield model predictions with the accuracy of the 

templates whereas the efficiency of template structure refinements is highly correlated with our 

ability in ab initio protein folding, because structure refinements often involve reconstruction of 

part of the side-chain and local backbone structures, and sometime the global topology for the 

low-resolution templates.  

 

Meanwhile, for most templates available in the PDB, a considerable portion of the sequence is 

either disordered or unaligned in the query-template alignments; the structures of these portions 

must be constructed using ab initio modeling. Finally, a very important bottleneck drawback in 

template-based modeling is that the alignment accuracy dramatically decreases with the 

sequence identity between query and template becomes low (e.g. <30%).  

 

Most recently, it has been demonstrated that the structural models built by free modeling can be 

used to help identify analogous templates that are of low sequence similarity but high structural 

similarity to the native, by matching the low-resolution ab initio models to experimentally solved 

structures in the PDB and thereby improve the success rate of distant-homologous structure 

predictions.  
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Thus, the development of efficient ab initio folding algorithms will remain a major theme in 

the field and should have important impacts on all aspects of protein structure prediction.  

 

It thus appears that the ab initio approach is still out of reach. But again that is not the direction 

we take. However the algorithms discussed above may very well prove of merit in the search we 

are after. 

 

5.3 LIGAND PROTEIN INTERACTIONS 

 

Ultimately we are focused on the two protein binding phenomenon. Our concern is to develop a 

useful metric to rank order protein-protein binding. Much work has been done in the 

pharmacology area regarding this problem, since it does go to the heart of many current 

therapeutics. (see Stevens p 254 and Patrick pp 116-117) 

 

The question then is; given two well defined proteins, how best to determine their bonding 

propensity. As Yang et al note: 

 

Predicting protein-ligand interactions using artificial intelligence (AI) models has attracted 

great interest in recent years. However, data-driven AI models unequivocally suffer from a 

lack of sufficiently large and unbiased datasets.  

 

Here, we systematically investigated the data biases on the PDBbind and DUD-E datasets. We 

examined the model performance of atomic convolutional neural network (ACNN) on the 

PDBbind core set and achieved a Pearson R2 of 0.73 between experimental and predicted 

binding affinities.  

 

Strikingly, the ACNN models did not require learning the essential protein-ligand interactions 

in complex structures and achieved similar performance even on datasets containing only 

ligand structures or only protein structures, while data splitting based on similarity clustering 

(protein sequence or ligand scaffold) significantly reduced the model performance.  

 

We also identified the property and topology biases in the DUD-E dataset which led to the 

artificially increased enrichment performance of virtual screening. The property bias in DUD-E 

was reduced by enforcing the more stringent ligand property matching rules, while the topology 

bias still exists due to the use of molecular fingerprint similarity as a decoy selection criterion. 

Therefore, we believe that sufficiently large and unbiased datasets are desirable for training 

robust AI models to accurately predict protein-ligand interactions. … 

 

State-of-the-art AI technologies represent a new paradigm in virtual screening with both 

opportunities and challenges for future improvement. The differences in different AI models 

mainly come from two aspects: one is the training dataset, and the other is the characterization 

method. At present work, we focused on analyzing the biases in two widely applied datasets for 

protein-ligand interactions.  
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We believe that we can indeed utilize current AI techniques as we have discussed previously. 

The challenge will still be the evolutionary changes and the metric for binding effectiveness. 

They continue: 

 

The former is represented by PDBbind, a collection of experimentally determined proteinligand 

complex structures with known binding affinities, which is reliable, but the amount of data is 

small and arguably suffers from the data redundancy caused by the protein and ligand 

similarity. Our systematic investigation of ACNN models on the PDBbind datasets led to a 

surprising observation that the model performance was not correlated with learning essential 

proteinligand interactions.  

 

Even the models trained on ligands or proteins performed as well as trained on complexes, 

while data splitting based on the similarity (protein sequence or ligand scaffold) clustering 

reduced the performance significantly.  

 

This suggests that the model performance may rely on the similarity of atomic features existing 

in the training and test subsets. It is expected that the rapidly increased amount of protein-ligand 

binding and structural data will improve the generality of the models by sampling the much 

larger and diverse chemical space.  

 

DUD-E has become a common dataset for evaluating structure based virtual screening methods, 

which were designed to benchmark enrichment performance by prioritizing the actives among a 

large amount of property-match but topology-dissimilar decoy molecules. As evidenced at 

present study, the topology bias is difficult to avoid when train on DUD-E. Therefore, care must 

be taken when using DUD-E for training AI models to predict protein-ligand interactions. 

However, DUD-E can still serve as an independent dataset to test the prediction power of AI 

models without using it for training.  

 

The use of fingerprint for selecting topological dissimilar decoys in the DUD and DUD-E 

datasets introduces topology bias in cross-target, and even cross-class CV. If we want to perform 

crosstarget CV on DUD-like datasets for benchmarking AI models, the decoys shall be selected 

not only dissimilar to actives of a specific target, but also similar to actives of the other targets. 

Therefore, it is desirable to develop a more sophisticated approach for DUD-like decoy selection 

by depleting the topology bias, and such dataset may serve as a general-purpose benchmarking 

dataset to assess the enrichment performance of different virtual screening approaches 

(including AI models).  

 

Nevertheless, it is encouraging that ACNN models have shown powerful capability for learning 

correlations hidden in structural data. Using the same neural network structure, ACNN was able 

to learn the structural similarities between ligands and between proteins. Even after protein 

sequence similarity clustering, ACNN still performed well in predicting ligand binding affinities. 

It is likely that ACNN model is well suitable for analysis of protein binding pocket, and it can be 

applied in protein pocket similarity analysis and protein pocket druggability prediction  

 

Zhou et al have examined the binding issues for RNA and proteins, a slightly different issue 

from protein to protein binding. They note: 
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RNA–protein interactions permeate biology. Transcription, translation, and splicing all hinge on 

the recognition of structured RNA elements by RNA-binding proteins. Models of RNA–protein 

interactions are generally limited to short linear motifs and structures because of the vast 

sequence sampling required to access longer elements. Here, we develop an integrated approach 

that calculates global pairwise interaction scores from in vitro selection and high-throughput 

sequencing.  

 

We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals 

regulatory motifs, discriminates between regulated and non-regulated RNAs within their native 

genomic context, and correctly predicts the consequence of mutational events on binding 

activity. We design binding elements that improve binding activity in cells and infer mutational 

pathways that reveal permissive versus disruptive evolutionary trajectories between regulated 

motifs. These coupling landscapes are broadly applicable for the discovery and characterization 

of protein–RNA recognition at single nucleotide resolution.  

 

Their approach is of interest in possibly more general bonding. 

 

5.4 EVOLUTIONARY FACTORS 

 

Viral evolution is a complex process. It entails global evolutionary changes and local changes21. 

Evolutionary changes are the most concerning long term. The virus can learn to adapt and spread 

across species. Local changes may simply be the result of simple deletions or additions just y 

chance. Evolutionary changes are much mor adaptive and thus more aggressive. We briefly 

consider evolutionary but to model them in the context of short term impact is both difficult and 

prone to a lack in specificity.  

 

Let us begin with some simple first steps. As Sirovetz et al have noted: 

 

Protein sequences have evolved to fold into functional structures, resulting in families of diverse 

protein sequences that all share the same overall fold. One can harness protein family sequence 

data to infer likely contacts between pairs of residues. In the current study, we combine this kind 

of inference from coevolutionary information with a coarse-grained protein force field ordinarily 

used with single sequence input, the Associative memory, Water mediated, Structure and 

Energy Model (AWSEM), to achieve improved structure prediction.  

 

The resulting Associative memory, Water mediated, Structure and Energy Model with 

Evolutionary Restraints (AWSEM-ER) yields a significant improvement in the quality of 

protein structure prediction over the single sequence prediction from AWSEM when a 

sufficiently large number of homologous sequences are available.  

 

Free energy landscape analysis shows that the addition of the evolutionary term shifts the free 

energy minimum to more nativelike structures, which explains the improvement in the quality of 

structures when performing predictions using simulated annealing.  

 
21 https://www.nature.com/scitable/topicpage/the-origins-of-viruses-14398218/ 

 

https://www.nature.com/scitable/topicpage/the-origins-of-viruses-14398218/
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Simulations using AWSEM without coevolutionary information have proved useful in elucidating 

not only protein folding behavior, but also mechanisms of protein function. The success of 

AWSEM-ER in de novo structure prediction suggests that the enhanced model opens the door to 

functional studies of proteins even when no experimentally solved structures are available … 

While understanding the general principles of protein folding is of scientific interest, this 

understanding is also helpful for devising algorithms that can be used to predict protein 

structure.  

 

Nevertheless, predicting detailed high-resolution structures of particular proteins remains an 

important but difficult task in practice. The structure prediction problem can be stated in the 

following way. Given the sequence of amino acids for a specific protein, without doing 

additional experiments on the protein, can we predict the native structure into which that protein 

will fold? For an ever-growing number of sequences the answer is now \yes".  

 

With the dramatic increases in computational power and the number of experimentally known 

structures in the protein data bank (PDB, knowledge-based prediction methods are proving 

able to achieve usefully accurate predictions of structure.  

 

For some time now, the most accurate method of protein structure prediction has been homology 

modeling, which involves exploiting knowledge of evolutionary descent.[5] Homology modeling 

involves searching for sequences that are globally similar to the target sequence and then, 

hopefully, finding a match to a protein whose structure has been solved already. One can 

generally assume that, if two sequences are sufficiently similar, they must have evolved from a 

common ancestor and will also share similar structures.  

 

Homology modeling works as a consequence of evolutionary restraints: in order for a modern 

protein along with all its ancient ancestors and cousins to have always functioned in the same 

way, they all must have folded throughout history into structures which must not have changed 

much. As the number of solved protein structures has increased, so has the power of homology 

modeling based on analogy to known structures. It has become increasingly rare to find globally 

novel folds. Nevertheless, at least in some cases, it remains a challenge to recognize whether or 

not a specific protein has a homolog with a solved structure prior to the experimental 

determination of the structure. Such proteins are sometimes said to be in a \twilight zone" of 

homology inference….  

 

Adding coevolutionary information from families of proteins can strongly improve the 

structure prediction capabilities of AWSEM, which ordinarily only uses a single target 

sequence as input. It is important to emphasize that none of the algorithms surveyed in this 

study were in a mode that used any structural information from homologous proteins.  

 

Again, we must have some reasonable model for evolutionary changes. In our current problem, 

we can reasonably assume stable ACE2 whereas we have a highly mutable spike. 
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(The only exception to this is in the supplementary information where we show results of 

including homologue input explicitly, for comparison. Using structural homologues in the 

fragment memory term gives results comparable to other schemes of homology modeling.)  

 

Including evolutionary information in structure prediction is a powerful part of the protein 

structure prediction toolkit, especially when no structurally solved homologues can be 

recognized. The incorporation of coevolutionary information into the AWSEM model now opens 

the door to mechanistic studies of functional proteins that do not have experimentally solved 

structures and are too large to simulate on biological timescales with all-atom models.  

 

Returning to the evolutionary factor we refer to Woo and Reifman who have noted: 

 

Viruses with RNA genomes evolve rapidly, evading selective pressure from the host immune 

response and adapting to changing environments.  

 

In particular, their capacity to switch host species, emerge into new vulnerable populations, and 

cause outbreaks has significant implications for viral disease control.  

 

Many such outbreaks in recent history have been attributed to viral species jumps: influenza A 

virus has jumped from birds and pigs to humans multiple times, the severe acute respiratory 

syndrome (SARS) epidemic was caused by a species jump of coronavirus from bats and palm 

civets to humans, and human immunodeficiency virus type 1 (HIV-1) is believed to have switched 

hosts from primates.  

 

Characterizing the complex factors affecting the evolution of viruses in natural settings among 

diverse groups of interacting hosts is a challenging task. Valuable insights have been gained by 

evolutionary experiments under more controlled conditions, particularly within the context of 

serial-passage experiments. In a serial-passage experiment, a cell culture or live host is 

inoculated by viral (or other) pathogens, usually already well adapted to different cell types or 

hosts. A pathogen’s growth under the restrictive host environment leads to within-host selection 

for advantageous variants, either present as a minority in the founder population or generated 

from error-prone replications.  

 

After a certain amount of time (approximately days) of such growths, a small subset of the 

resulting pathogen population is sampled and used to inoculate a fresh new medium or host, 

initiating a subsequent round of the passage.  

 

Generally, rapid adaptation to the new host environment in the form of increased fitness and 

virulence is observed (typically within 10 passages) along with attenuation of adaptation to the 

former host. In addition to revealing key adaptation strategies a pathogen can exhibit, an 

important application of serial passages is the production of attenuated vaccine strains capable 

of eliciting immune responses without virulence (16).  

 

The recent availability of rapid and inexpensive deep-sequencing techniques has the potential to 

significantly improve our understanding of how key factors affect virus evolutionary dynamics, 

including species jumps, especially when combined with controlled experiments such as serial 



49 | P a g e  

 

passages. A major obstacle in leveraging the growing sequence data, however, is the lack of 

quantitative connections between such genotype data and experimentally measurable viral 

phenotypes, including growth properties, infectivity, virulence, and tissue tropism.  

 

The main objective of this study was to develop, validate, and apply stochastic models of viral 

evolutionary dynamics that can bridge this gap by realistically modeling genomic 

diversification and adaptation processes during serial passages …  

 

We may infer insights into a better understanding of evolutionary dynamics of viral pathogens in 

natural settings from the study of serial passages. Systematic investigation of the effects of 

factors influencing the relative ease of species jump…can play important roles in such 

interpretations. For instance, the host cell number and bottleneck size roughly correspond to the 

size of susceptible host populations and the degree and severity of selection present during the 

natural spread of a viral infection, whereas the infection and death rates characterize the 

population dynamics within this host environment.  

 

In this viewpoint, the longitudinal patterns of population size and quasispecies structure … can 

be regarded as idealizations of what typically happens in natural infectious cycles: a viral strain 

ventures into a new host environment, completing multiple cycles of rapid growth followed by 

stagnation due to host depletion and reemergence in a fresh host population, but with factors 

characterizing each round highly variable and unpredictable rather than uniform as in passages.  

 

Our study of evolutionary dynamics under passages suggests that adaptation mostly occurs in 

the early growth phase, an adapting viral population may frequently get stuck without a direct 

route to a neighboring highly fit strain, and the speed of adaptation is most sensitive to the 

distance and target/bottleneck sizes. The specific instance of adaptation simulated under the 

empirically derived influenza A virus fitness landscape explicitly demonstrates that in reality, a 

quasispecies adaptation involves the stochastic evolution of both the master sequence and its 

clouds, instead of a simple jump from the WT genotype to a global MF sequence.  

 

Finally we have the evolutionary issue of interaction as discussed by Manrubia and Lázaro note: 

 

Interactions between viruses and hosts either at the individual or at the population level have a 

profound influence in the evolution of RNA viruses. Part of this evolution is reflected in the 

topology of the corresponding phylogenetic trees.  

 

The type of infection caused by the virus (acute or persistent), the duration of the immunity 

elicited by the pathogen, the rate of the replenishment of susceptible hosts, the capacity of the 

virus to acquire immune-escape mutations, or the transmission mode, are some of the factors 

that affect the evolutionary dynamics of RNA viruses.  

 

Recent developments in molecular biology and bioinformatics have permitted to reconstruct the 

phylogenies of several RNA viruses along a number of years. The comparison of the 

phylogenetic trees obtained reveals important differences that in many cases can be explained on 

the basis of the epidemiological behaviour of each virus. The reconstruction of the phylogeny of 
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the influenza subtype H3N2 shows that the evolution of the virus follows a single track in the 

long term .  

 

The tree has a main trunk with branching points representing drifting strains that become extinct 

in an approximately one-year period. This type of topology likely results from the continuous 

emergence of new virus variants that can evade recognition by the immune system through a 

change in the properties of their antigenic sites. In the case of influenza the renew of susceptibles 

comes from births of new hosts and from regained susceptibility of previously infected 

individuals to new influenza variants.  

 

The short infectious periods of influenza, together with its high genetic variation, leads to a 

rapid strain turnover, probably one of the reasons producing the strong seasonality of influenza 

epidemics. An unresolved question concerns the transmission mode of influenza through 

respiratory droplets containing just one or a few viral particles. This strong reduction in 

population size could lead to the fixation of mutations during optimization of the virus inside 

each particular host.  

 

The expected result should be a very high diversity among lineages (infecting different hosts) 

that is not observed in natural populations of the virus. Mathematical models of influenza 

epidemics have approached this question by taking into account the balance between the 

production of new strains and the competition-induced stochastic extinction of existing variants. 

The results obtained show that, if cross-immunity is the only form of competition between strains, 

there is an exponential growth of diversity. However, if a short-lived immunity that inhibits 

reinfection by any new strain during a short time is considered in the model, the probability of 

explosive diversity growth is strongly reduced.  

 

A different type of phylogenetic tree is exhibited by viruses that provoke a strong cross-immunity, 

as is the case of measles. In this case the epidemic cycles arise from repeated exhaustion of 

susceptible hosts combined with the lifelong immunity elicited by the pathogen. An immune 

response equally effective against all strains does not promote selection of the best adapted 

genotypes. Therefore, many strains can coexist with relative frequency, and the topology of the 

phylogenetic tree is mainly determined by spatial-temporal dynamics. 

 

 The situation is clearly different in the case of persistent infections, as those established by HIV 

and hepatitis C virus. The long period of evolution experienced by these viruses inside their hosts 

means that both dynamics, intra- and inter-host should be reflected in their phylogenetic trees. 

Due to the long time between transmission events, epidemic cycles are not observable in the case 

of these viruses. Instead of that, what is observed is a growing epidemic trend.  

 

The fact that the infection by a subtype does not protect against new reinfections with other 

subtypes of HIV or HCV results in a phylogeny that mainly reflects the demographic and spatial 

history of transmission. The continuous evolution of these viruses inside their hosts permits to 

perform intra-host phylogenies. In HIV, the highly immunogenic envelope gene presents and 

intra-host phylogeny similar to that exhibited by influenza A at the population level. The 

presence of drugs to treat the infection is another factor that strongly conditions the intra-host 

phylogeny of the virus.  
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Phylogenies of RNA viruses are very difficult to interpret due to the large number of factors 

involved.  

 

To know the precise interactions between the immune response, the genetic variation of the 

pathogen and the inter-strain competition (whose intensity depends on the mode of transmission 

and on the nature of the infection–acute or persistent) does not suffice. Moreover, all these 

factors must be integrated in the context of population dynamics of the host at the spatial-

temporal level. An important advance is being made in this field by contrasting mathematical 

approaches with the actual behaviour of viruses in nature. Progress in the amount of field data 

at hand comes from the large number of virus genome sequences available and from the 

increased number and precision of epidemiological data.  

 

Thus understanding the evolutionary constraints will be critical but may be difficult to model.  
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6 VARIANT TARGETING 

 

We have demonstrated that we know the wild type spike protein and the ACE2 receptor protein. 

We know the binding sites. Now we pose the following problem: 

 

1. Take the wild type and consider variants based upon evolutionary mutations. Or use the wild 

type, WT, and using existing variants 

 

2. Eliminate any variants which have no binding 

 

3. Consider binding site strengths for known variant combinations. 

 

4. Perform evolutionary variant changes and calculate binding strength. 

 

6.1 VARIANTS 

 

Let us examine some recent examples. From Ashoor et al we have the following Table which 

depicts their analysis showing the n umber of polar and hydrophobic interactions between the 18 

ACE2 contact residues, on 9 ACE2 variants, and on 24 spike variants including the Wuhan wild 

type. The authors note: 

 

Table … summarizes the variations of molecular interactions numbers and patterns between the 

SARS-CoV-2 RBD mutations occurring in the 18 residues the virus engages to interact with the 

ACE2 isoform1 and the eight variants found to be significantly destabilizing when tested against 

the Wuhan RBD sequence in comparison to hACE2 isoform1. The number and position of polar 

and hydrophobic bonds22 in addition to the salt bridges characterize each interaction pattern. 

The most striking interactions variations concern SARS-CoV-2 RBD mutants N501T and N501S 

and ACE2 variant D355N.  

 

 
22 Recall that hydrophobic bonds in proteins arise as a result of the interaction of their hydrophobic amino acids with 

the polar solvent, namely water. The hydrophobic amino acids are gly, ala, val, leu, ile, met, pro, phe, trp. These 

amino acids have hydrocarbon sidechains that, because of their non-polar chemistry, are forced into close 

association (hydrophobic "bonds") in an aqueous solvent. To understand the formation of hydrophobic bonds, 

familiarity with the energetics that drive the packing of solvent H2O molecules into liquid lattices is required. In 

contrast the polar bonds result from the typical OH coupling having unequal charge distribution. 
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RBD sequence 
residues 

ACE2 variants 
Isoform 1 D355A D355N E35D E35K F4 IL M82I T27A ؛S1 IP 

P H P H P H P H P H P H P H P H P H 

Ref. 
sequence 

SARS-
CoV٠2 
Wuhan 
strain 

12 65 12 64 13 68 13 65 12 65 12 65 12 65 12 64 11 64 

Mutations K417N 11 64 11 63 12 67 12 64 11 64 11 64 11 64 11 63 10 63 

K417R 12 68 12 67 13 71 13 68 12 68 12 68 12 68 12 67 11 67 

G446A 11 65 11 64 12 68 12 65 11 65 11 65 11 65 11 64 10 64 

Y449N 10 62 10 61 11 65 11 62 10 62 10 62 10 62 10 61 9 61 

Y453F 11 59 11 58 12 62 12 59 11 59 11 59 11 59 11 58 9 58 

L455F 12 70 12 69 13 73 13 70 12 70 12 70 12 70 12 69 11 69 

F456L 12 64 12 63 13 67 13 64 12 64 12 64 12 64 12 62 11 63 

A475V 12 68 12 67 13 71 13 68 12 68 12 68 12 68 12 66 11 66 

G476S 12 64 12 63 13 67 13 64 12 64 12 64 12 64 12 63 11 63 

G476A 12 64 12 63 13 67 13 64 12 64 12 64 12 64 12 63 11 63 

F486L 12 62 12 61 13 65 13 62 12 62 12 62 1262 12 61 11 61 

Q493R 13 66 13 65 14 69 12+ 
1 

salt 

62 12 62 13 66 13 66 13 65 12 65 

Q493L 12 64 12 63 13 67 12 64 12 64 12 64 12 64 12 63 11 63 

G496C 12 71 12 70 13 74 13 71 12 71 12 71 12 71 12 70 11 70 

T500I 11 61 11 58 11 60 12 59 11 59 11 59 11 59 11 58 10 58 

N501T 12 66 12 65 13 69 13 66 12 66 12 66 12 66 12 65 11 65 

N501S 12 65 12 64 13 68 13 65 12 65 12 65 12 65 12 64 11 64 

N501Y 12 72 12 71 13 75 13 72 12 72 12 72 12 72 12 71 11 71 

G502D 12 69 12 68 13 72 13 69 12 69 12 69 12 69 12 68 11 68 

G502C 12 68 12 67 13 71 13 68 12 68 12 68 12 68 12 67 11 67 

G502R 12 70 12 69 13 73 13 70 12 70 12 70 12 70 12 69 11 69 

Y505H 12 61 12 60 13 64 13 61 12 61 12 61 12 61 12 60 11 60 

Y505E 12+ 
1 

salt 

66 12+ 
1 

salt 

65 13+ 
1 

salt 

69 13+ 
1 

salt 

66 12+ 
1 

salt 

66 12+ 
1 

salt 

66 12+ 
1salt 

66 12+ 
1salt 

65 11 + 
1salt 

65 

 

The above chart provides certain starting points. 

 

1. The spike proteins shown above have evolved along certain paths. These paths can be 

extended and a list of all the putative mutations and variants can be obtained.  

 

2. The polar bonds between the two proteins are generally smaller than the putative hydrophobic 

bonding. 

 

Variants or mutations may occur in a variety of ways. Our focus is on local variants, ones where 

we see a change of a nucleotide, a deletion or perhaps a deletion. We would not consider 

complex variants that do occur but may result in a dramatic change. As can be seen above, the 

variants may be single or multiple points. We list below the variants as shown by Lan et al and 

present them in a increasing location on the spike protein. 
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 Mutation Nucleic Acid Number From To 

K417N 417 K N 

K417R   K R 

G446A 446 G A 

Y449N   Y N 

Y453F 453 Y F 

L455F 455 L F 

F456L 456 F L 

A475V 475 A V 

G476S 476 G S 

G476A   G A 

F486L 486 F L 

Q493R 493 Q R 

Q493L   Q L 

G496C 496 G C 

T500I 500 T I 

N501T 501 N T 

N501S   N S 

N501Y   N Y 

G502D 505 G D 

G502C   G C 

G502R   G R 

Y505H 505 Y H 

Y505E   Y E 

 

We then plot the number per segmented location as shown below. As will be seen the dominant 

mutations are centered on the protein nucleic acid sequences. This chart represents an amalgam 

of all known variants as of the publication date. 
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For simplicity the chart below summarizes the nucleic acid definitions and related RNA 

sequences so one can readily see what putative nucleotide has changed. 

 

Alanine  Ala  A  
GCA GCC GCG 

GCU 

Cysteine  Cys  C  UGC UGU 

Aspartic acid  Asp  D  GAC GAU 

Glutamic acid  Glu  E  GAA GAG 

Phenylalanine  Phe  F  UUC UUU 

Glycine  Gly  G  
GGA GGC GGG 

GGU 

Histidine  His  H  CAC CAU 

Isoleucine  lie  I  AUA AUC AUU 

Lysine  Lys  K  AAA AAG 

Leucine  Leu  L  
UUA UUG CUA 

CUC CUG CUU 

Methionine  Met  M  AUG 

Asparagine  Asn  N  AAC AAU 

Proline  Pro  P  
CCA CCC CCG 

CCU 

Glutamine  Gin  Q  CAA CAG 
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Arginine  Arg  R  
AGA AGG CGA 

CGC CGG CGU 

Serine  Ser  S  
AGC AGU UCA 

UCC UCG UCU 

Threonine  Thr  T  
ACA ACC ACG 

ACU 

Valine  Val  V  
GUA GUC GUG 

GUU 

Tryptophan  Trp  W  UGG 

Tyrosine  Tyr  Y  UAC UAU 

 

We now take the Lan et al variants along with the CDC current variants and plot another set of 

sequence counts using all current available data. Again, we see the center clusters. There are end 

points which now depict some changes as well. This does not reflect deletions. 
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We have shown below the spread of variation for each of the four data sets we have examined. 

The UK has the broadest spread and Lan the least. It must be remembered that Lan et al was 

presented early on whereas the other three are current actual variants. Note we have two spreads 

on the B.1.526 New York variant. Since this is a recent variant we have included both 

measures23. 

 

Overall, we can now make some useful observations. Namely that the variants often have center 

clustered mutations which means that one may just need to focus on variants centered at the 

spike RNA. That may allow for a lower computational load.  

 

6.2 PROTEINS 

 

Lan et al have examined the binding spots of SARS-CoV-2 and SARS-CoV and this is shown 

below: 

 

 
23 See Annavajhala et al they note: Phylogenetic analyses of sequences in the database further reveal that this 

B.1.526 variant is scattered in the Northeast of US, and its unique set of spike mutations may also pose an antigenic 

challenge for current interventions. 
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Lan et al also present an interesting Table delineating the binding sites between ACE2 WT and 

the current SARS and the previous version. This is shown below (as modified) and this shows 

some overlap between the two regarding ACE2 sites. There is a considerable amount of 

difference and sites not in both. 
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SARS-CoV-2 RBD Length (A) ACE2 Length (A) SARS-CoV RBD 

Hydrogen bonds N487(ND2) 2.6 Q24(OE1) 2.9 N473(ND2) 

  K417(NZ) 3.0 D30(OD2)     

  Q493(NE2) 2.8 E35(OE2)     

      E37(OE1) 3.4 Y491(OH) 

  Y505(OH) 3.2 E37(OE2)     

      D38(OD1) 3.0 Y436(OH) 

  Y449(OH) 2.7 D38(OD2) 3.0 Y436(OH) 

  T500(OG1) 2.6 Y41(OH) 2.8 T486(OG1) 

  N501(N) 3.7 Y41(OH) 3.3 T487(N) 

  G446(O) 3.3 Q42(NE2)     

  Y449(OH) 3.0 Q42(NE2)     

      Q42(OE1) 2.7 Y436(OH) 

  Y489(OH) 3.5 Y83(OH) 3.3 Y475(OH) 

  N487(OD1) 2.7 Y83(OH) 2.8 N473(ND2) 

      Q325(OE1) 3.8 R426(NH2) 

      E329(OE2) 3.0 R426(NH2) 

      N330(ND2) 2.8 T486(O) 

  G502(N) 2.8 K353(O) 2.6 G488(N) 

  Y505(OH) 3.7 R393(NH2)     

Salt bridges24 K417(NZ) 3.9 D30(OD1)     

  K417(NZ) 3.0 D30(OD2)     

      E329(OE2) 3.7 R426(NH1) 

      E329(OE1) 3.9 R426(NH2) 

      E329(OE2) 3.0 R426(NH2) 

Note: ND2, nitrogen delta 2; NE2, nitrogen epsilon 2; NZ, nitrogen zeta; N, nitrogen; NH1  ،nitrogen eta 1: 

NH2  ،nitrogen eta 2; OH  ،oxygen eta ،■ O  ،oxygen ،· OD1 ٠  oxygen delta 1 ،· OD2٠ oxygen delta 2; OG1, 

oxygen gamma 1,- OE1 ،oxygen epsilon 1,- OE2, oxygen epsilon 2. 

 

Yan et al also presented their analysis of the binding elements as shown below: 

 

 
24 A salt bridge is a complex bond consisting two non-covalent interactions, one the typical hydrogen bond and the 

second an ionic bond. Thus the polar is an O-H bond and the ionic may be an O-HN type bond. 
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In the above we see the Q474 spike bond to the Q24 ACE2 element. As with all of these bonds 

we should attempt to determine the metric which best defined the effectiveness of this bond. We 

have made several suggestions herein. 

 

 
 

In the above we have two bonds, first the spike Y453 to the ACE2 H34 and second the spike 

K417 to the ACE2 D30. It is interesting to see the central nucleic acids of the spike binding to 

the tail ends of the ACE2. 
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In this case we have the spike Q498 binding is what may be a salt bridge with Q42, then the 

spike N501 to the K353 and apparently the R357. It also appears to have the spike T500 bonging 

with R357. Here we see movement on ACE2 bonding to the central region.  

 

These multiple bonds may result in a strong bonding to the ACE2 resulting in the ability for the 

virion to enter the cell. 

 

Here, in the above examples, the red elements are polar interactions. The nucleic acids and their 

locations on the respective proteins are shown. It is worth comparing these to the Table by Lan et 

al previously. Some of these linkages are at variance. However this information can be used for 

protein perturbation analysis. 
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7 IMMUNE SYSTEM ISSUES 

 

The primary focus has been on antibodies to the spike protein. Classic vaccines used killed 

viruses or otherwise disabled viruses. Thus they presented to the immune system the full panoply 

of antigens, not only a spike but for the most part all the structural elements. From this Ab were 

produced and provided immunity. The question is; what were the Ab developed against, that is 

what was the Ag? 

 

Recently there has been a focus on CTL, cytotoxic T lymphocytes or killer T cells. In a recent 

Nature article they note25: 

 

Coronavirus vaccine development has largely focused on antibodies, … Antibodies, particularly 

those that bind to crucial viral proteins and block infection, can hold the key to ‘sterilizing 

immunity’, which not only reduces the severity of an illness, but prevents infection altogether.  

That level of protection is considered the gold standard, but typically it requires large numbers 

of antibodies … 

 

Alongside antibodies, the immune system produces a battalion of T cells that can target viruses. 

Some of these, known as killer T cells (or CD8+ T cells), seek out and destroy cells that are 

infected with the virus. Others, called helper T cells (or CD4+ T cells) are important for various 

immune functions, including stimulating the production of antibodies and killer T cells.  T cells 

do not prevent infection, because they kick into action only after a virus has infiltrated the body. 

But they are important for clearing an infection that has already started. In the case of COVID-

19, killer T cells could mean the difference between a mild infection and a severe one that 

requires hospital treatment …  

 

T cells, by contrast, can target viral proteins expressed inside infected cells, and some of those 

proteins are very stable, she says. This raises the possibility of designing vaccines against 

proteins that mutate less frequently than spike, and incorporating targets from multiple 

proteins into one vaccine.  

 

 

 

7.1 B CELLS, ANTIBODIES AND KILLER T CELLS 

 

As Abbas notes regarding cytotoxic T cells, CTLs, or more euphemistically "killer T cells", they 

work as follows: 

 

The T cells expressing CD8+ proliferate and differentiate into cytotoxic T lymphocytes (CTLs), 

which express cytotoxic granules and can kill infected cells. 

 

The differentiation of CD8+ T cells into functional CTLs and memory cells requires 

recognition of antigen presented by dendritic cells, signals from CD4+ helper T cells in some 

 
25 https://www.nature.com/articles/d41586-021-00367-7 

 

https://www.nature.com/articles/d41586-021-00367-7
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situations, costimulation, and cytokines. Differentiation to CTLs involves the acquisition of the 

machinery to kill target cells and is driven by various transcription factors. 

 

In some situations of chronic antigen exposure (such as tumors and chronic viral infections), 

CD8+ T cells initiate a response but begin to express inhibitory receptors that suppress the 

response, a process called exhaustion. 

 

CD8+ CTLs kill cells that express peptides derived from cytosolic antigens (e.g., viral antigens) 

that are presented in association with class I MHC molecules. CTL-mediated killing is mediated 

mainly by granule exocytosis, which releases granzymes and perforin. Perforin facilitates 

granzyme entry into the cytoplasm of target cells, and granzymes initiate the process of 

apoptosis. 

 

CD8+ T cells also secrete IFN-γ and thus may participate in defense against phagocytosed 

microbes and in delayed type hypersensitivity (DTH) reactions. 

 

We demonstrate the overall dynamics of this process below. B cells can generate Ab from the 

presented Ag but then T cells clean up the identified cells. In contrast, CTL can themselves 

remember the Ag after it has been presented and then subsequently attack the infected 

substances. 

 

 

Virus Infected Cell

CTL

Activate ThActivated CTL
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with Antigen
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Virgin Th

Activate Dendritic Cell

Activate Dendritic Cell

Acttivated 
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The CTL has MHC I receptors as shown below. In contrast most cells have MHC II receptors to 

identify them as self. 
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The dynamics of the CTL process is then shown in the small below. 
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Thus CTL have memory, memory of the specific Ag without any Ab needed and then can remain 

active immune system defenders 

 

7.2 VACCINES AND KILLER T CELLS 

 

Recent work has been done regarding CTL and COVID-19. As Tarke et al have noted: 

 

This study presents a comprehensive analysis of the patterns of epitope recognition associated 

with SARS-CoV-2 infection in a cohort of approximately 100 different convalescent donors 
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spanning a range of peak COVID-19 disease severity representative of the observed distribution 

in the San Diego area. SARS-CoV-2 was probed using 1,925 different overlapping peptides 

spanning the entire viral proteome, ensuring an unbiased coverage of the different HLA class II 

alleles expressed in the donor cohort.  

 

For HLA class I, we used an alternative approach, selecting 5,600 predicted binders for 28 

prominent HLA class I alleles, representing 61% of the HLA A and B allelic variants in the 

worldwide population, and affording an overall 98.8% HLA class I coverage at the phenotypic 

level. The biological relevance of the epitope characterization studies summarized here is 

underlined by the use of the ex vivo AIM assay that does not require in vitro stimulation, which 

potentially skews the results by eliciting responses from naive cells.  

 

The AIM assay is also more agnostic for different types of CD4+ T cells, as it measures all 

activated cells, regardless of T cell subset or any particular pattern of cytokine secretion.  …  

 

Finally, the functional relevance of our study was highlighted by the generation of improved 

epitope MPs for measuring T cell responses to SARS-CoV-2; these experimentally defined pools 

are associated with increased activity and lower complexity when compared to our previous 

MPs based on overlapping and predicted peptides.  

 

We plan to make these epitope pools available to the scientific community at large and expect 

that they will facilitate further investigation of the role of T cell immunity in SARS-CoV-2 

infection and COVID-19. In conclusion, we identify several hundred different HLA class I and 

class II restricted SARS-CoV-2-derived epitopes.  

 

We anticipate that these results will be of significant value in terms of basic investigation of 

SARS-CoV-2 immune responses and in the development of both multimeric staining reagents and 

Tcell-based diagnostics. In addition, the results shed light on the mechanisms of 

immunodominance of SARS-CoV-2, which have implications for understanding host-virus 

interactions, as well as for vaccine design.  

 

Now we also must remember the usefulness of memory T cells. As Omilusik and Goldrath 

comment: 

 

Vaccination has substantially reduced illness and death from infectious disease by exploiting the 

ability of long-lived memory T cells to ‘remember’ a previous encounter with a specific microbe 

and mount a rapid response upon pathogen re-exposure. Understanding how immunological 

memory is established and maintained might provide insights that could enable improvements in 

vaccine design. … 26 

 

Naive T cells are those that haven’t previously responded to a pathogen. When they recognize a 

pathogen, they rapidly divide and express molecules such as cytokine proteins that help to fight 

infection. These responding cells are called effector T cells (more specifically, a type of effector 

cell called a cytotoxic T cell) and they can migrate into inflamed tissues and kill infected cells. 

 
26 See Akondy et al.as well as Youngblood et al. who reveal the cell population that gives rise to memory T cells, 

and how the population of memory T cells evolves. 
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Once the pathogen is eliminated, most effector cells die, but a small pool of long-lived memory 

cells remains that is poised to respond rapidly if reinfection occurs. Which cells give rise to 

memory T cells has been extensively investigated. Two general possibilities have been proposed: 

the cells either arise from a subset of the effector cells that escape death, or instead descend 

directly from naive T cells, which could, as early as their first cell division, give rise to cells with 

effector-T-cell or memory-T-cell potential.  

 

Memory T cells appear to retain immunogenicity for significant periods. They have the 

capability to identify infected cells and attack them as they do the virus itself. They continue: 

 

Virus-specific memory T cells that were present between one and two years after vaccination 

showed little dilution of the deuterium, indicating that minimal cell division had occurred in 

these cells. In a comparison of cell-surface proteins, these memory cells resembled naive T cells, 

but the deuterium labelling reveals that they were formed from the dividing effector-T-cell 

population. These results support a model in which viral-specific CD8+ T cells extensively 

proliferate upon pathogen recognition and modify their DNA to favour expression of effector 

molecules. Later the cells stop dividing, stop expressing effector genes and reexpress many genes 

associated with the naive state, such as genes that aid T-cell survival and migration.  

 

There has been a recent interest in these memory T cells as the backstop in the COVID vaccine 

scenario. However their function and underlying cellular dynamics are still only partially 

understood. 
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8 OBSERVATIONS 

 

We can now make several observations. 

 

8.1 ACE2 VARIANTS ARE GENERALLY WELL KNOWN. 

 

ACE2 is the target for the spike protein. However there are a multiplicity of ACE2 receptors, 

many allowing a more aggressive form of viral attack. Yet their structure is understood in detail 

including the binding sites. Thus one end of the problem seems well enough defined to then seek 

the other end of the problem. 

 

8.2 ACE2 VARIANTS CAN RESULT IN CO-MORBIDITIES AND ALSO INCREASED MORBIDITY AND 

MORTALITIES IN COVID INFECTIONS 

 

Many of the ACE2 variants also are promoters of co-morbidities which are known to make viral 

infections of increased morbidity and mortality. Yet to date there does not appear to be any 

program to ascertain ACE2 structures as well as the attacking virion structure including the 

spike. Frankly both must be obtained and catalogued in order to effectively deal with this and 

future viral attacks. 

 

8.3 COVID-19 VARIANTS ARE INCREASING 

 

COVID-19 variants are increasing, some with greatly increased morbidity, mortality and 

infectivity. We have data on some of these, albeit quite limited. 

 

8.4 COVID-19 VARIANTS LACK REQUIRED TRACKING GLOBALLY 

 

It is clear that it is essential that there be an open transparent and timely database of COVID 

variants. We have argued for this for the past year but it appears that entities like the CDC prefer 

to keep such under wraps.  

 

8.5 LIGAND CONNECTIONS ARE WELL KNOWN FOR WILD TYPE ACE2 AND COVID-19 

 

We now know the ligand connections for the WT spike. As Yi et al have noted: 

 

Coronavirus disease 2019 (COVID-19), caused by the novel human coronavirus SARS-CoV-2, is 

currently a major threat to public health worldwide. The viral spike protein binds the host 

receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD), and 

thus is believed to be a major target to block viral entry. Both SARS-CoV-2 and SARS-CoV share 

this mechanism. Here we functionally analyzed the key amino acid residues located within 

receptor binding motif of RBD that may interact with human ACE2 and available neutralizing 

antibodies.  
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The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-

CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice; however, 

the cross-neutralizing activity was much weaker, indicating that there are distinct antigenic 

features in the RBDs of the two viruses. This finding was confirmed with the available 

neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2. It is worth noting that a 

newly developed SARS-CoV-2 human antibody, HA001, was able to neutralize SARS-CoV-2, but 

failed to recognize SARS-CoV. Moreover, the potential epitope residues of HA001 were 

identified as A475 and F486 in the SARS-CoV-2 RBD, representing new binding sites for 

neutralizing antibodies.  

 

Overall, our study has revealed the presence of different key epitopes between SARS-CoV and 

SARSCoV-2, which indicates the necessity to develop new prophylactic vaccine and antibody 

drugs for specific control of the COVID-19 pandemic although the available agents obtained 

from the SARS-CoV study are unneglectable.  

 

8.6 EVOLUTIONARY MODELS FOR COVID-19 CAN BE DEVELOPED 

 

As we have observed, it appears that we can begin to develop evolutionary models for the spike. 

A serious constraint is the impact of deletions and recombinations in this virus RNA. We have 

seen them occur especially in the recent variants. Recombination may be more complex in that it 

could create a dramatically new virus. We have a location, namely centered RNA, and we have 

some putative a priori types of transitions. This may afford a reasonable starting point for a 

Bayesian analysis. (see Manrubia and Lazaro and also Woo and Reifman)  

 

8.7 INCREMENTAL EVOLUTIONARY CHANGES IN ACE2/COVID-BINDING AFFINITY CAN BE 

DETERMINED 

 

If we desire a ranking then one must be able to determine a useful metric. It can be argued that 

binding affinity may be such a metric. As Ou et al have noted: 

 

The current global pandemic of COVID-19 is caused by a novel coronavirus SARS-CoV-2. The 

SARS-CoV- 2 spike protein receptor-binding domain (RBD) is the critical determinant of viral 

tropism and infectivity.  

 

To investigate whether naturally occurring mutations in the RBD have altered the receptor 

binding affinity and infectivity, firstly we analyzed in silico the binding dynamics between 

mutated SARS-CoV-2 RBDs and the human ACE2 receptor.  

 

Among 1609 genomes of SARS-CoV-2 strains isolated during the early transmission phase, 32 

non-synonymous RBD mutants were identified and found clustered into nine mutant types under 

high positive selection pressure. Applying molecular dynamics simulations, three mutant types 

(V367F, W436R, N354D/D364Y) displayed higher binding affinity to human ACE2, likely due to 

the enhanced structural stabilization of the RBD beta-sheet scaffold.  

 

The increased infectivity of one mutant (V367F) circulating worldwide was further validated by 

performing receptor-ligand binding ELISA, surface plasmon resonance, and pseudotyped virus 
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assays. Genome phylogenetic analysis of V367F mutants showed that during the early 

transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype 

strain than the dual-mutation variants (V367F + D614G), which emerged later and formed a 

distinct sub-cluster.  

 

The analysis of critical RBD mutations provides further insights into the evolutionary 

trajectory of SARS-CoV-2 under high selection pressure and supports the continuing 

surveillance of spike mutations to aid in the development of COVID-19 drugs and vaccines.  

 

Furthermore, Gan et al demonstrate the measurement of binding affinities and thus this can be 

readily performed for all putative spike variants. Also the work by Fersht is an extensive set of 

quantitative metrics which may have some application. 

 

8.8 KILLER T CELLS AND VACCINES 

 

We have introduced the CTLs and their ability to deal with antigens and viral infections. CTL 

are useful in various cancer immunotherapies. However they can detect a multiplicity of Ag and 

this have the potential for a broad based immune response that lasts. It is worth following this 

field as well. 

 

The key issue with CTL is twofold. First, what Ag do they develop upon? Second, how long will 

they last? Clearly the answer to the first may yield insight into a broader base of vaccine 

prevention. mRNA vaccines are limited to the spike as currently constructed. Simple, direct, but 

limited. In contrast the virion may have a multiplicity of Ags detectable via macrophages27. Also 

it seems that CTL may last longer than Abs. Thus it is worth examining this path in some depth. 

 

 

  

 
27 

https://www.researchgate.net/publication/336116071_Tumor_Associated_Immune_Cells_On_the_one_hand_and_o

n_the_other_hand 

 

https://www.researchgate.net/publication/336116071_Tumor_Associated_Immune_Cells_On_the_one_hand_and_on_the_other_hand
https://www.researchgate.net/publication/336116071_Tumor_Associated_Immune_Cells_On_the_one_hand_and_on_the_other_hand
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