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1 INTRODUCTION 
 
εικονίζω, a verb, means to picture, to image, to visualize in Greek and the neologism 
"Eikonomics" means the art of visualizing or envisaging. It may not be the best to begin a 
document of this type by inventing a new word but it may have some merit as we proceed. In the 
analysis of a patient where we seek to ascertain if they have some form of malignancy, we all too 
often deal with images, icons if you will of how the disease is presented to us. It is not the 
symptoms but the radiological image, the ultrasound image, the cytological or histological 
image. The image is limited in a sense by the tools available. Cytologically we have the 
resolution, the results of stains, of antibodies, and even of electron microscopic analyses. The 
questions we then seek to examine are then: 
 
1. How can we apply sophisticated computer processing to enhancing the multiplicity of imaging 
techniques? 
 
2. Which of the available techniques offer the best options in diagnosis and prognosis. For 
example, should we rely upon existing metrics and then try to computerize them or should we 
seek such options as neural networks wherein we may have no idea what the underlying metric 
may be. 
 
3. Can we, via the computerized approaches, seek enhanced correlative methods to blend the 
methodologies? 
 
4. Where and how can we integrate genomic information and seek to correlate them with the 
other data sets? 
 
5. Should the exiting metrics for current imaging analyses be integrated into advanced neural 
networking methodologies. Namely, a multiplicity of metrics or observables have been identified 
and incorporated over the past century in radiology and histology to identify key disease states. 
Should we use these as starting points or should they just be abandoned and let the neural nets 
just work their wonders? 
 
6. In Eikonomics, should we seek dispositive answers or just useful leads? 
 
7. How best should we try to integrate a multiplicity of imaging media? 
 
Imaging has been a separate path in the diagnosis and treatment of cancers. It has net generally 
been an integrated element in this process. The imaging modalities are often independent of the 
many insights in the areas of genomics and immunotherapy. The imaging specialist generally 
utilizes a standard set of tool to perform independent assessments of putative lesions, trying to 
localize and identify them back to the individuals doing the assessment and treatment. 
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In this note we try to examine the potential for imaging, understood as radiomics, as a tool which 
can be integrated with all the other assessment modalities and to be used effectively in diagnosis, 
prognosis and treatment. 
 
1.1 BASIC	CONSTRUCTS	
 
We consider the development and evolution of diagnostic imaging. This is outlined below for an 
example in ultrasound scanning of the thyroid. 
 
 

 
 
The classic baseline is a manual scan with interpretation of the scan by a radiologist. The 
radiologist examines the scan in the three dimensions across multiple regions looking for 
possible nodules and in turn looking for specific characteristics of those nodules. A normal 
thyroid is devoid of such nodules but as the patient ages nodules become quite common. The 
nature of the nodule such as hypoechoic, solid, containing microcalcifications are often 
indicative of a malignant state. The radiologist looks for these visually and places these 
observations in their report. 
 
A second stage in the development is the inclusion of the observations into a classifier. Namely 
taking the measurements or just presence of some characteristic into an algorithm would could 
provide diagnostic implications would take the analysis to a second step.  
 
A third step is to aid the radiologist by digitally recognizing patterns such as a solid nodule, a 
hypoechoic nodule or a microcalcification. The image recognition process enhances the 

•Examine thyroid looking for determinants
Classic US 

Imaging (USI)

•Using results from USI determinats evaluate based on 
suprevised classifierUS Classifier

•Scan US image using pattern recognizer to elicit 
determinants

•Use determinants via classifier

Pattern 
Recognition Scan

•Determinants fed to NN which has been trained

•Result obtained and modified

Use determinants 
in Neural Net
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radiologist's ability to minimize missed lesions. The image recognition process looks for the 
characteristics generally a priori considered indicative. 
 
A fourth step would be the implementation of a deep learning or neural network approach, 
wherein using some supervised system of training between benign and malignant tissues, scan 
are made of the ultrasound and processed by the neural net based upon volumes of trained results 
and the net then determines the presence or absence of a malignancy. 
 
Clearly the fourth step deletes the need for a radiologist. 
 
1.2 SOME	STATISTICS	
 
We preface the study with two examples. Both are somewhat simplistic but in use. First is the 
analog example, namely one where we make measurements of factors which are variable 
numbers. The second is digital, namely a case where something is or is not. This characterization 
is somewhat unique but it seems to apply to a wide variety of cases. In addition the first case is 
based upon measurements of bodily fluids and other quantitative measures and the second on 
images which either present a characteristic or not. 
 
1.2.1 Analog Variables 
 
Let us begin with some basic definitions. Recall that: 
 

1 1

0 0

Sensitivity P H H

Specificity P H H

   
   

  

 
Sensitivity is the probability of saying a person who has the disease has the disease based upon 
the test.  
 
Specificity is the probability that a person who does NOT have the disease is said to NOT have 
the disease based upon the test. 
 
The sensitivity and specificity depends upon the variability of the metric used to test for the 
presence or absence of the disease and well as the check point or marker for the metric which 
yields presence or absence of the disease. 
 
Let us look at a simple example. Let us assume we have a test for prostate cancer which depends 
upon: 
 
1. PSA 
2. % Free PSA 
3. Velocity 
4. Age 
5. Family history 
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6. Prior most recent biopsy history (benign, BPH, HGPIN) 
 
We can measure these. Then we create some metric: 
 

1 6

6

1

( ,..., )

i i
i

m f x x

or

m a x






  

 
The metric m is a classifier metric and the linear version is a linear classifier. Now a modified 
version could be: 
 

6

1

( )i i
i

m a g x


   

 
where we choose the g functions to give a better performance. For example one may use a 
logistic function of the like where there is some one-to-one mapping. This is a quasi linear 
classifier. 
 
Now if we choose some point p, where if m>p we declare a PCa and m<p then no PCa we have a 
classifier. Now each value of p would yield a different sensitivity and specificity. If we were to 
plot Sensitivity versus 1-Specificity, namely the probability we say a disease when there is a 
disease versus the probability we say there is a disease when there is no disease we get a curve 
whose area we can calculate. Hopefully we can say there is a disease when there is with high 
probability and that we say with low probability that there is a disease when there is none. This 
can be measured by the area under this curve, AUC.  
 
1.2.2 Digital Variables 
 
Let us now consider an example. Here are measurements for thyroid ultrasound tests. We have: 
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Characteristic 
Present or Absent 

Sensitivity 
PRESENT 
Say disease  

when has disease 

Specificity 
ABSENT 

Say no disease 
 when no disease 

Hypoechoic c/w (consistent with) 
surrounding thyroid 

81% (48-90%)  53% (36-92%) 

Marked hypoechogenicity c/w strap 
muscle 

41% (27-59%)  94% (92-94%) 

Microcalcifications 44% (26-73%)  89% (69-98%) 
Macrocalcifications 10% (2-17%)  94% (84-98%) 

Absence of halo 66% (33-100%)  43% (30-77%) 

Irregular, microlobulated margins 55% (17-84%)  80% (62-85%) 
Solid consistency 86% (78-91%)  48% (30-58%) 
Taller-than-wide shape on 
transverse view 

48% (33-84%)  92% (82-93%) 

 
In the table we see that a solid consistency of a nodule has an 88% sensitivity but a 48% 
specificity. Thus a solid nodule means that there is a high chance of saying malignant when it 
really is. In contrast we are about 50:50 saying it is not when it is not.  In contrast with no 
macrocalcifications we have a 94% chance of saying it is not when it is not but the presence of 
them may be only a 10% that there is when there is. Now the range of the values is also critical 
and we shall examine that in a bit. 
 
All of the metrics above are binary. Namely the characteristic is present or not. This is unlike the 
PCa example of a real number. There are 8 metrics where we have a present or absent. The 
question then is: 
 
Can we improve the AUC by using a classifier which in some manner combines all eight 
elements? If so, how should they be combined and weighted? 
 
Thus we can ask; what is we have four characteristics being positive? What then is the 
specificity, the sensitivity? What is also the other four are negative? Does it matter greatly what 
four and four we are talking about? 
 
Let us consider another question. Let us assume we do not read this with a human but by a 
computer. Consider hypoechoicity and microcalcifications. We can develop a pattern recognition 
system to identify each of these, the first via a system looking for expansive hypoechoic areas 
and second by looking for hyper stellate patterns of a certain size range. 
 
Now we can ask the following question. How does the sensitivity and specificity change as we 
add multiple measures? Specifically, as mentioned above, considering hypoechoic with 
microcalcification, two elements which are either present or not, each having a certain level of 
performance, what happens to our metrics when we use both? 
 
We know: 



DRAFT WHITE PAPER 
EIKONOMICS: RADIOMICS, GENOMICS, CANCER; 
DIAGNOSTIC AND PROGNOSTIC 

 

9 | P a g e  
 

 

,

P Cancer Hypoechoic

and

P Cancer Microcalcified

thus

P Cancer Hypoechoic Microcalcified







   

   

   

  

 
Thus, what is the value of the third expression given the first two. More importantly just what is 
meant by the latter expression. We can have the following: 
 

,

means having calcification and hypoechoic

or 

having calcification and hypoechoic

P Cancer Calcified Hypoechoic   

  

 
This we can consider it as follows graphically. Here we show a region where the cells are 
malignant and those where they are not. The circles represent a region where a certain 
characteristic is observed. The intersection of the characteristic and the malignancy is the 
measure of saying a malignancy given a characteristic when a malignancy exists. Or equivalently 
the percent of the circle in the malignant area is a measure of the probability of a malignancy 
when a characteristic exists given a malignancy exists. Thus we can show it below: 
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Hypoechoic

Calcification

Cancer

P[Cancer|Calcified]P[Cancer|Hypoechoic]

P[Cancer|Calcified, Hypoechoic]=P[Cancer|Hypoechoic]+P[Cancer|Calcified]‐Overlap

 
 
or as the probabilities expand: 
 

Hypoechoic Calcification

Cancer

P[Cancer|Calcified]P[Cancer|Hypoechoic]

P[Cancer|Calcified, Hypoechoic]=P[Cancer|Hypoechoic]+P[Cancer|Calcified]‐Overlap
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Note if we assume the or, it is then the probability of both less the overlap, whereas if we assume 
both then it is just the overlap. The or case yields a greater sensitivity whereas the and case is 
lesser. As we add all eight factors we can determine the AND the OR cases. The OR cases 
ultimately converge to 1. 
 
Namely we can write: 
 

    

  

  

P Malignant Hypo or Calci P M H or C

P M H P M C P M H and C

but

P M H and C P M H P H C

       
           

          

  

 
Clearly, we do not have the data on the last conditional probability of H given C. This is the 
probability that H is true given C is true. Expansion to all eight terms should be obvious. 
Namely: 
 

1

1 1 1

, ... , n

n n n

i i i j
i j

i i j

P M x or or x

P M x P M x P x x multiples
  

   

            
  

 
We show an example of the multiples below where we have the intersection of all three 
conditions. 
 

Hypoechoic

Calcification

Cancer

Solid
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The model here is: 
 

   or    or 

      

   and 

  

P Malignant Hypo or Calci Solid P M H or C S

P M H P M C P M S

P M H and C P M H and S P M S and C

P M H and C S

but

P M H and C P M H P H C

etc

       
           
            
   

          

 

 
or 
 

    

  

  

P Malignant Hypo or Calci P M H or C

P M H P M C P M H and C

but

P M H and C P M H P H C

yet

P M H P H C P M C P C H

thus

P M H P C H

P M C P H C

also

P M H P M C P M H P H C

       
           

          

              

      
      

               

 1 1

1

P M H P H C P M C

or

P M H P M C
P H C

P M H



            

             

  

 
We shall discuss these implications later. However several observations are important. The 
probabilities such as P[H|C] are generally unknown. Namely the relationship between disparate 
indicators. Thus PSA and %Free may be independent or highly dependent. Studies have not 
indicated specifically and the underlying cellular dynamics, albeit somewhat understood, may 
not be complete.  
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This means that as we look at specifics which we can measure that they may be correlated and as 
such we must understand those correlations both factually as well as physiologically.  
 
1.3 SUMMARY	
 
Thus we will now summarize our approach. 
 
First we review the current variety of imaging modalities, from classic radiology, thru 
ultrasound, and including cytology and histology. The intent is to focus on the images which are 
created in the context where they can be analyzed using current computer methods. 
 
Second, we spend some time on mpMRI, multi parameter MRI, as a robust imaging technology. 
In this case we examine the multiplicity of ways the images can be analyzed from classic human 
interpretation through convolutional neural nets. This introduces the issue of image analyses 
using two-dimensional image operations. 
 
Third, we briefly discuss the elements of genomics. Frankly there must be a well-defined nexus 
between the genomics and the Eikonomics analyses. Unfortunately they currently are orthogonal 
to each other, each bringing separate inferences in diagnosis. 
 
Fourth we examine several different malignancies to evoke the Eikonomics of each. 
 
Overall this document is not meant to be an encyclopedic presentation of various forms of 
imaging and their integration. Rather it is at best an exploratory statement of what may be a 
variety of open options to explore images in an integrated manner and to do so at various levels 
of automated sophistication. The reader may notice a certain hesitancy regarding the unbounded 
use of neural networks. The reason is simple. The principle of training a complex neural network 
totally in the hands of the network qua arbiter of inputs, facilitates the total loss of underlying 
facts. First we know that neural network designs do not necessarily converge to a common 
answer. Second, medicine often is solved by some pathognomonic set of symbols and signs. 
 
As Stoyanova et al have noted, the progression can be viewed as shown below: 
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The above progression is at the heart of what we are calling Eikonomics. 
 
 
 
 
  

npMRI

T2w

DWI

ADC

DCE

Segmentation

Prostate Structures

Normal

Regions of Interest

Feature Extraction

Volume/Shape

Histogram

Texture

Transforms

Data Integration

Clinical

Genomic

Proteomic

Metabolomic

Data Mining

Radiogenomics

Prognostic

Diagnostic
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2 IMAGING 
 
We briefly examine the multiplicity of imaging modalities. This is in no way complete but it is 
representative. As we noted earlier, we focus on images from which we can ascertain diagnostic 
and prognostic metrics. Images, unlike say PSA, are much more complex and contain a higher 
degree of information. The increase in information may be beneficial but it also may find itself 
as a distraction. For example if we are looking for solid lesions or calcifications in a thyroid 
ultrasound, then the multiplicity of other factors may be mere noise to that ultimate decision 
process. The human can be trained to filter out the noise, the machine must "learn" how to 
accomplish that. 
 
2.1 US	
 
Ultrasound, US, is a real time imaging tool which can measure a variety of characteristics. It is 
limited by the depth of penetration from the sensor to the target tissue. It serves a variety of uses 
from breast, prostate, thyroid, heart and other organs. The thyroid application is quite 
demonstrative of what it can accomplish and the prostate use during biopsy now functions with 
mpMRI.  
 
US has its limitations. It demands proximity to the tissues being investigated. It has limited 
resolution, since the wavelength of the sound even at 15 MHz is not that great. It can assess 
general tissue structure, solid versus cystic, the presence of such things as calcium crystals, if 
large enough, and using doppler the flow through the tissues. It can work on thyroids, breast, 
ovaries, prostate, even the heart. It can do vascular assessments. It can lend some substance to 
possible malignancies but it is not dispositive. 
 
From Wang et al (2019): 
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Categories Description Methods 
Texture Reflects the surface characteristics of a lesion 

and it is frequently used in traditional CAD 
system. 

• Laws Texture Energy (LTE) 
• Contrast of Gray Level Values 
• Gray Level Cooccurrence Matrix (GLCM) 
• Local Binary Pattern (LBP) 
• Wavelet Features 
 

Morphology More focus on lesion itself. Such as  
smoothness of lesion margin, length and 
width ratio of lesion and so on 

• Speculation 
• Depth-to-Width Ration 
• Elliptic-Normalized Circumference (ENC) 
• Elliptic-Normalized Skeleton (ENS) 
• Long Axis-to-Short Axis Ratio (L:S) 

Model Based Statistical model of the backscattered echo 
that can indicates the character of 
backscattered echo from tissues. 

• Nakagami model-based features 
• K-Distribution model-based features 

Descriptor 
Features 

Different applications (diseases) create 
different descriptor features and features are 
generated by radiologist base on their 
experience 

• Shape 
• Calcifications 
• Posterior shadow or posterior echo 
• Echo characteristic 

 
Also from Wang et al (2019) as modified: 
 
 
Classifier Description 

Linear Classifier  Linear discrimination analysis and logistic regression are two 
linear classifiers and reliable only with linear data. 

Bayesian Classifier  It is involved in machine learning and it predicts posterior 
information base on analyzing previous data points. 

Support Vector Machine  Kernel functions are utilized to find decision hyperplanes by 
computing the original data into the higher dimensional space. 
The complexity increases as dataset increases. 

Decision Tree  Its structure is a flowchart and it computes classification rules 
from disordered data. The size of data and feature values affect 
the complexity of the decision structure.  

Artificial Neural Network  It is a machine learning model base on human nervine system. 
The complexity of the network affects the training time. 

AdaBoost  Integrating several weak classifiers and building a strong 
classifier based on prediction voting from weak classifiers. 

 
 
2.2 CAT	
 
CAT is a classic form of ionizing radiation used to reconstruct in a 2D and 3D manner the tissues 
in the path of the beam. It is an example of what is called the inversion problem, a method of 
taking a multiplicity of paths and their total signal response and then interpolating what the 
transmission was at each pixel along the path. The basic principle of the CAT is the use of the 
Radon transform and its relationship to the Fourier transform. Having been used clinically in the 
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US since 1972 it is a relatively inexpensive and fast screening tool, albeit putatively highly 
ionizing.  
 
We shall see that it has use in certain screening of malignancies such as colon cancer. Contrast 
media may also be employed and this may increase the usefulness of this methodology. 
 
 
2.3 MRI	
 
MRI is a powerful soft tissue imaging modality and it has a great deal of flexibility in its abilities 
by selectively choosing various activation pulses. Basically MRI operates by placing the tissue in 
a strong magnetic field, displacing the field, and measuring the resulting signal. Using the 
inverse Fourier transform we can determine the tissue characteristics across each scan, and 
constructing them in the three dimensional slices. In a sense MRI is more powerful than CAT 
especially on soft tissues however is it more costly and does have certain negative patient 
reactions. 
 
2.4 2D,	3D,	OR	4D	IMAGING	
 
Many if not most imaging studies are 2D. They may be slices of coronal, sagittal or transverse 
cuts. The objective is to scan the target area for abnormalities observable on the imaging 
modality. 
 
3D imaging has been used in neuro environment and certain cardio environments as well.  
 
4D imaging is 3D with a temporal element, Again in a cardio environment such as valve 
abnormalities this may have application. 
 
2.5 CYTOLOGY	AND	HISTOLOGY	
 
Cytology, the cell analysis, and histology, the micro-structure analysis, are also two branches of 
imaging which can be considered. Thus a cytological exam could entail looking at thyroid cells 
where the issue is the structure of the nucleus and nucleolus, even the nature and form of the cell 
and nucleus walls. In contrast the histological examination of the prostate may look for basal and 
luminal cell organization and proliferation. Imaging in a general sense, here we are using visual 
albeit microscopic images, can be helpful in diagnosis and prognosis. Many of the techniques in 
other imaging fields apply here as well. 
 
Histological analysis can provide an understanding of the tissue structures, the assembly and 
organization of cells in the tissue in question. Thus we can examine a prostate biopsy specimen 
and see if it has the cellular amalgamation that may be reflective of HGPIN or even PCa. In a 
similar manner we can examine the structure of a skin biopsy to see if the melanocytes have 
migrated upward and we have a melanoma in situ or worse if they have migrated downward into 
large clusters.  
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From Brinster et al we have an example of a superficial spreading melanoma1. 

 
 
 
In contrast we have from Su et al2 a presentation of various forms of prostate HGPIN: 
 
 

 
 
 
As we focus on images we can see that identifying a malignancy or possible malignancy 
automatically can be quite complex. The pathologist looks for telltale forms, clusters of 

 
1 Brinster et al, Dermatopathology, Saunders, 2011 
 
2 Su et al, Early Diagnosis and Treatment of Cancer: Prostate Cancer, Saunders, 2010 
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melanocytes as in the melanoma example or proliferation of prostate cells in a less organized 
form as in HGPIN. 
 
Now cytological metrics, namely single cell characteristics, also play a role. For example, 
consider thyroid cancer, papillary characteristics.  
 

 
 
Here we have an example of papillary cancer with clear nuclei3. Thus searching at the cell level 
in this malignancy allows for a diagnosis. There also are histological clues as well. 
 
  

 
3 Boerner, Biopsy Interpretation of the Thyroid, Wolters Kluwer, 2017 
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3 mpMRI OPTIONS: IMAGE ANALYSES 
 
We now spend some time examining mpMRI image analyses. What we consider here can in 
many ways be applied to the other image modalities discussed. mpMRI is a complex utilization 
of various MRI modalities. It uses T1 and T2, as well as diffusion weighted MRI and dynamic 
contrast enhanced MRI. Thus using the ability to have a T1 and T2 signal, allow enhancement of 
various tissues, using diffusion as a means to identify benign from malignant and in the use of 
contrast such as gadolinium, one can obtain a set of overlaid images that enable a deeper 
understanding of the prostate tissue as an example. We now will attempt to examine how this set 
of complex issues can then be further employed with US imaging or other forms in identifying a 
putative malignancy.  
 
mpMRI is basically a three-process approach.  
 
First is the use of T2 weighted images. These are now standard imaging.  
 
Second is diffusion weighted images, DWI, and these attempt to assess the flow through cell 
masses. Health cells allow flow or diffusion and cancer cells inhibit. Unfortunately so do scar 
tissues from previous biopsies. Thus as in all of these methodologies there may be drawbacks. 
 
Third is DCE or dynamic contrast enhancements, which use a contrast medium such as 
gadolinium and dynamically asses its flow to determine vascular structure.  
 
Thus, mpMRI is T2, DWI and DCE. From these three we get a full mpMRI analysis4. The 
mpMRI results are structure, density, and vascularization. When we use this approach we can see 
parts of the organ that may be of interest, assess whether the cells are original or replacements, 
and if the region has any increase in vascularization or growth. That then yields information 
which can be used to assess malignancy potential. 
 
3.1 GENERAL	ASSUMPTIONS	
 
We will start with an understanding of a simple statistical construct. Let us assume there are N 
variables which can be measured to determine if a person has a certain disease state. We then can 
determine: 
 
  ,|k n k nP Disease x p   

 
Namely we know by data the fact that given the n state we can determine a specific disease state 
k. 
 
We also have: 
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, ,1k n k nq p    

 
Now lest us assume that we have N of the measurements. Let us examine a simple 2 
measurement example with two disease states. 
 
   1 1 2 1 1 2| , | ,P D x x P D x x   

 
Let us focus on mpMRI as a start. The question we pose is; what do we mean by radiomics using 
mpMRI? For example, is it totally computerized or totally reliant upon the radiologist? Do we 
send the patient into the imaging system and out comes a diagnosis? Or do we image a patient 
and have the radiologist make all the judgements? How much and how far do we allow the 
system to function?  
 
For example, in breast mammography we generally perform an x-ray study and then the 
radiologist examines the image looking for signs of a malignancy. They are generally two-
dimensional films, now electronic,  
 
3.2 GENERALIZED	METRICS	
 
The classic approach is in line with RECIST protocols used in clinical trials. As Eisenhauer et al 
have noted describing RECIST: 
 
Assessment of the change in tumour burden is an important feature of the clinical evaluation of 
cancer therapeutics. Both tumour shrinkage (objective response) and time to the development of 
disease progression are important endpoints in cancer clinical trials. The use of tumour 
regression as the endpoint for phase II trials screening new agents for evidence of anti-tumour 
effect is supported by years of evidence suggesting that, for many solid tumours, agents which 
produce tumour shrinkage in a proportion of patients have a reasonable (albeit imperfect) 
chance of subsequently demonstrating an improvement in overall survival or other time to event 
measures in randomized phase III studies.  
 
At the current time objective response carries with it a body of evidence greater than for any 
other biomarker supporting its utility as a measure of promising treatment effect in phase II 
screening trials. Furthermore, at both the phase II and phase III stage of drug development, 
clinical trials in advanced disease settings are increasingly utilizing time to progression (or 
progression-free survival) as an endpoint upon which efficacy conclusions are drawn, which is 
also based on anatomical measurement of tumour size.  
 
3.3 CLUSTER	ANALYSES	
 
Cluster analysis is a now classic means to group data into classes. One may have supervised or 
unsupervised and there are a variety of clustering algorithms such as nearest neighbor clustering. 
Generally we will not use clustering here. 
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3.4 PATTERN	RECOGNITION	
 
Pattern recognition has been available in one form or another for decades. It has been used in a 
wide set of areas. Pattern recognition techniques allow for the "extraction" of key patterns to be 
used in discrimination. Thus using edge extraction in modifying say a US image we can then 
look for a pattern representative of a papilla like growth. We can look for pedunculated lesions, 
look for cyst like surfaces or look for clear nucleus or Orphan Annie eyes. Pattern recognition 
tools allow for the extraction of know or unknown patterns. If for example we know that certain 
patterns are pathognomonic then we can design a pattern recognition system to look for those 
specific patterns. 
 
We believe that the development of pattern recognition and extraction methods will be at the 
heart of any successful classification scheme. The patterns will produce metrics which we can 
then use in the classification.  
 
3.5 CLASSIFICATIONS;	SUPERVISED	AND	UNSUPERVISED	
 
Classifiers take multidimensional data sets and establish lines of demarcation separating one 
class from another. The example of using PSA and %Free and seeking the dividing line between 
benign and malignant allows for a reasonable test. Multidimensional classifiers are much more 
highly structured. 
 
We can now measure various miRNAs in body fluids and this gives rise to the liquid biopsy 
concept. However, the key question is how does one take a collection of miRNA measurements 
and ascertain, for example, that there is a prostate malignancy. For example we may from the 
previous presentation generate a vector of measurement of miRNA densities given by: 
 

1

...k

n

x

m

x

 
   
  

  

 
where this is for patient k and measures n miRNA densities. We want a discriminant function 
which takes these values and determines whether the patient has cancer of not. We could have a 
linear weighted discriminant or a more complex non-linear version. 
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We can look at a Markov model as below. However these transition probabilities are often 
difficult to determine. 
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1

1

1

1

....

,...,

....

,...,

N

N

P x PCa

P x x PCa

or

P PCa x

P PCa x x

  

  

  

  

 

where we have the two probabilistic ways to ascertain a condition based upon a data set.  

 
Let us consider a simple example. Assume we have to determine if a patient has prostate cancer 
or not. We are given three variables; PSA, % Free PSA, and PSA velocity5. Namely: 
 
PSA=PSA 

 
5 See: Carter et al, Detection of Life-Threatening Prostate Cancer With Prostate-Specific Antigen Velocity During a 
Window of Curability, Journal NCI Vol 98 Nov 2006 pp 1521-1527, 
https://academic.oup.com/jnci/article/98/21/1521/2521858  
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PF=% Free PSA 

V=PSA Velocity 

Thus we have three measurements and they are somewhat related. Let us start with two of them; 
PSA and PF. The data may appear as shown below: 

 

 

The red are PCa cells and the orange are benign. The higher the PSA the greater the chance for 
PCa. However, the higher the PF the greater the chance for benign, namely BPH. This is a 
simple case where we would have some discriminant where both variables count.  
 
Now consider all three variables. We have PSA, PF and V. We need a discriminant so as to 
separate malignant from benign. We have data ex post facto so this is a supervised learning 
algorithm. We need to obtain some covering surface that maximizes the sensitivity and 
specificity. The algorithm must maximize the AUC. The more data the better the algorithm, yet 
we will always have aberrant cases. 
 
The challenge in this case is that the discriminant is not a simple plane of some sort. It can be a 
complex surface winding its way around the 3-space. Namely the 2-space example shown in the 
above diagram may change for every V measure. For any V value we can obtain a 2-space 
profile. But that profile is different for every V and each has a different AUC. We can design a 
simple process where we enter all the data and calculate that surface on a cut by cut basis. Then 
any user can enter the three variable and get a result; benign/malignant, specificity, sensitivity. 
 
Now let us consider a simple linear discriminant for PSA/PF and for a fixed V. Our goal is to 
select a curve: 
 

0PF aPSA PF    
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The goal is to obtain "a" and PF0 so that we maximize both sensitivity and specificity. This can 
be readily accomplished by a variety of simple algorithms.  
 
The next question would be; how many data points do we need and how frequently must they be 
updated? The answer can really only be obtained in an iterative manner with real data. We know 
that PSA alone has at best an AUC of 70%. Obtaining the AUC in this three element case is 
more complex. We may also want to add such elements as age, family history, prior biopsy 
results and the like. Each element adds another layer of complexity. 
 
A simple and direct approach would be a linear classifier. Our metric is sensitivity and 
specificity. Namely: 
 

1 1

0 0

Sensitivity P H H

and

Specficity P H H

   

   

  

 
If the discriminant plane is: 
 

 

1

1

( )

...

........

N

N

g x ax b

where

x

x

x

a a a

 

 
   
  



  

The goal is given the data set, find the a vector and b to separate the data so as to maximize 
sensitivity and specificity6. 
 
There are a multiple set of classifiers and our selection of a linear classifier in a supervised 
environment is just one of many. We do not know the underlying statistics of the miRNA and 
also each miRNA itself may or may not be as strong an element in classification. Some miRNA 
that we choose may be a weak element and should be eliminated. That can only be ascertained 
after extensive data analysis. 
 
Another way one could examine this partition problem is to assume that the two variables we 
discussed earlier, say PSA and PF, are independent Gaussian variable with mean and standard 
deviations: 
 

 
6 We refer to Theodoridis and Koutroumbas and their work on classification. We note that there are a multiplicity of 
algorithms to define this linear classifier. Also, there is a great deal on PCa learning algorithms in Hastie et al. 
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Then we could use classic decision analytical methods to determine optimal selection criteria. 
We could estimate the mean and variance from the given data and even ascertain a probability 
density function to see if it varies from Gaussian. It is not clear that such an approach yields 
better discrimination. 
 
Finally, one could seek to use a Principal Component Analysis to determine optimal orthogonal 
axes7. However, again in my experience, this would not gain a great deal. 
 
A linear classifier using the large data set may be more than adequate. We show below several 
examples of a linear classifier for PSA vs FP8. 

 
 
and for a second dimension we depict this below: 

 
7 See Dunteman, Principal Component Analysis, Sage University Paper, 1989. 
 
8 We use the reference of Duda and Hart, Pattern Classification, 1st Ed, Wiley, 1973. 
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Note all have different data yet all have same means on the two data sets. Thus the slope of the 
classifier is the same and intercept changes a bit. This same approach carries over to the miRNA 
context for multiple dimensions. 
 
Now classifiers can often be nonlinear. The above simple example assumed a linear deign. 
However better performance may be obtained with a nonlinear classification scheme. The 
simplicity of the above classifier is based upon two facts. First, we know from the data who is 
benign and who is malignant. Second, we have selected elements, three in this case, upon which 
we can segment and classify.  
 
In our study of images we do not necessarily have elements to be used to establish a 
classification. We start with a set of digital images. Perhaps from the images we can obtain a 
finite set of metrics, perhaps not. The next discussion is on neural networks, a more sophisticated 
from of classifier. 
 
3.6 NEURAL	NETS	
 
Imaging analysis using neural networks often uses a convolutional neural network. The input 
may be an N X M matrix of k bit pixels. Namely a digital picture. We then collect are large set of 
such pictures and using knowledge of the disease state a priori we pass them through a network 
whose weights of connections are adaptively changed so as to maximize the probability that if 
we put in an  unknown we get a very good guess as to whether it is benign or malignant.   
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In such a design we often use a convolution processor which passes on to the next layer a new 
meta-pixel which can be some integration or enhancement of the basic input. We show this 
construct below. 
 

Benig
n

Malig
nant

Convolutional Plane

 
 
 
It functions as follows: 
 
1. A two dimensional image, properly sized, is samples into a two dimensional input plane in the 
network. It is identified as benign or malignant, and that is all. 
 
2. The network has n planes and each plane has a convolutional filter as noted. Thus the entry on 
the following plane is comprised of (k x k) convolved samples of a segment of the prior plane. 
 
3. A backward propagation algorithm is used as the network is trained. Namely M samples, each 
identified as malignant of benign, is passed through the network and the weights between layers 
are modified to optimize the output based on the known sample. Classically this may have been a 
least squares algorithm as was done in the classic Widrow Hoff optimizer for phased array 
antenna beam forming9. 
 
4. After the M samples are used to set the weights, the unknown is entered and the sample 
unknown identified. 
 
Needless to say there are several key differences: 

 
9 See Monzingo and Miller, Introduction to Adaptive Arrays, Wiley, 1980, Chpts 3-4, VanTrees, Optimum Array 
Processing, Wiley, 2000.  
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1. No a priori patterns are selected. In fact, the network does not even assume that there are cells 
there. It has been trained on a large number of patterns.  
 
2. The user may have no idea what the patterns emphasis may have been. Thus after some 
training period, the user is relying on the network to select what is a discriminant and what 
weight it may have. 
 
The algorithm for neural networks with training is generally simple to grasp but it has many 
variations. Namely, data sets x consisting of say n x n arrays of 8 bit grey scale samples are used 
to put into a single hidden neural net, where we have say an m x m array of weights a which we 
want to train to discriminate between a disease state. The algorithms generally look like: 
 

1

1

...

...

ˆ ˆ ˆ( 1) ( ) ( ( ) ( ) )

m

N

T

a

a

a

and

x

x

x

where

a k a k K a k x k s

 
   
  

 
   
  

   

  

 
where K is some convergence matrix. Namely we train the neural net with a massive number of 
samples whose sate "s", the disease, we know, and generate a(k), to reach some stable state, 
hopefully. Then with an unknown we send it into the net and hopefully get the correct disease 
state. 
 
Now a brief overview of the Least Square Estimate procedures. Let us assume we are trying to 
estimate the slop and intercept of a straight line: 
 
y ax b    
 
we have N sets of x and y values, all somewhat noisy. That is: 
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Now we want a recursive estimator of the form (as we note to be a least square steepest descent 
model): 
 

ˆˆ ˆ ˆ( 1) ( ) ( ( ) ( ) ( ) ( ))

ˆ ˆ ˆˆ( 1) ( ) ( ( ) ( ) ( ) ( ))

a

b

a k a k y k a k x k b k

and

b k b k y k a k x k b k

     

     

  

 
This is based on steepest descent algorithms and the choice of the function for the descent is 
based upon a least square performance function10. Namely we want to minimize: 
 

2
2 ˆˆ( ) ( ) ( ) ( )y k a k x k b k        

 
Classic least square has the descent function be that which minimizes the error for each element 
being minimized. Namely: 
 

2 2ˆˆ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )

ˆˆ2 ( ) ( ) ( ) ( )

y k a k x k b k
a k a k

y k a k x k b k

           

    

  

 
and the same for b. Thus, the steepest descent for a least square estimator is as we have shown 
above. The constants are chosen for convergence purposes and they are negative. 
 
Now in a complex neural network we take the image which may be two dimensional and use 
each pixel as an input. Then we may convolve the image in some manner with a small m x m 
filter and pass it along. The weights at each step are adaptively changed if say a supervised test is 
performed. The neural net weights change in a manner similar to the linear estimator discussed 
above. We incrementally change them as we send identified image after image into the system11. 

 
10 See Athans et al, Systems, Networks, and Computation, McGraw Hill, 1974 
 
11 See Hakim 
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There are now a massive number of algorithms to be used and with multiple layers as shown 
below we have deeper and deeper nets. Again the issue is that we are relying on the net to 
identify the diagnostic issues and we may never know what the net sees as important. 
 
Now an added approach is to establish a pattern recognition front end where we can identify such 
things as edges, MDI artifacts, cell size, cell counts and the like. Then we feed those parameters 
to the Neural Net. We show this below. 

Benign

Malignant

Pattern 
Recognition

Neural 
Network

 
 

The above is a clear example of a pattern recognition system followed by a classifier. The 
classifier we have here is a neural network one but frankly we can use a variety of other classifier 
algorithms. It is critical to note that pure NN AI systems would just admit the images qua pixels. 
Here we add a priori knowledge of structures.  
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4 GENOMICS INTEGRATED 
 
Everything we do with images whether those generated from processing to those observed 
directly are reflective of genomic consequences.  
 
4.1 DNA	
 
DNA sequencing has become a common practice. The literature is extensive and the sequencing 
may be complete or on segments of the total DNA. 
 
4.1.1 Mixed Cells 
 
Generally we see the sequencing done of a mass of cells. The problem is that type of sequencing 
reflects the mass and not the cell per se. One suspects as we can produce more cost effective 
single cell sequencing that the mixed cell approach will abate. 
 
4.1.2 Single Cells 
 
Single cell sequencing is now a possibility. Thus we can extract a cell at a time and sequence the 
individual cells. Then we get a complex array of sequenced data since in a tumor the DNA may 
be pleiomorphic12. As Navin et al noted: 
 
Genomic analysis provides insights into the role of copy number variation in disease, but most 
methods are not designed to resolve mixed populations of cells. In tumours, where genetic 
heterogeneity is common1,2,3, very important information may be lost that would be useful for 
reconstructing evolutionary history. Here we show that with flow-sorted nuclei, whole genome 
amplification and next generation sequencing we can accurately quantify genomic copy number 
within an individual nucleus. We apply single-nucleus sequencing to investigate tumour 
population structure and evolution in two human breast cancer cases. Analysis of 100 single 
cells from a polygenomic tumour revealed three distinct clonal subpopulations that probably 
represent sequential clonal expansions.  
 
Additional analysis of 100 single cells from a monogenomic primary tumour and its liver 
metastasis indicated that a single clonal expansion formed the primary tumour and seeded the 
metastasis. In both primary tumours, we also identified an unexpectedly abundant subpopulation 
of genetically diverse ‘pseudodiploid’ cells that do not travel to the metastatic site. In contrast to 
gradual models of tumour progression, our data indicate that tumours grow by punctuated 
clonal expansions with few persistent intermediates. 
 

 
12 See https://www.nature.com/articles/nature09807 Navin et al, Tumor Evolution Inferred by Single-cell 
Sequencing, Nature, 472, 90-94, 2001. 
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Single cell sequencing will introduce a massive data analysis challenge. If for example, we 
sequence 1,000 cells then we then must decide which ones are more important. Is there truly a 
stem cell and have we captured it and have we identified it? 
 
4.2 RNA	
 
RNA and its ensuing proteins are key elements we often examine. RNA however is often fragile 
and especially as it leaves the cell. Thus we often use a reverse transcriptase to obtain a CDNA 
from the RNA and use that as the means to identify the original RNA. 
 
4.3 MIRNA	
 
Micro RNAS have been found to be powerful elements controlling cells both locally and at a 
distance13. Micro RNAs have been known for about thirty years. During the last ten years there 
has been an explosion in the discovery, identification, and operation of these short stretches of 
single stranded RNAs. These small segments of RNA can act in powerful ways to silence gene 
expression by binding to mRNAs before they can effect actionable proteins or cutting them 
apart. This note is an attempt to examine the current status of these significant factor in cellular 
functioning and especially in cancer initiation, control and metastasis. 
 
In early 2019 the paper by Alles et al noted: 
 
While the number of human miRNA candidates continuously increases, only a few of them are 
completely characterized and experimentally validated. Toward determining the total number of 
true miRNAs, we employed a combined in silico high- and experimental low-throughput 
validation strategy.  
 
We collected 28 866 human small RNA sequencing data sets containing 363.7 billion sequencing 
reads and excluded falsely annotated and low-quality data. Our high-throughput analysis 
identified 65% of 24 127 mature miRNA candidates as likely false-positives. Using northern 
blotting, we experimentally validated miRBase entries and novel miRNA candidates.  
 
By exogenous overexpression of 108 precursors that encode 205 mature miRNAs, we confirmed 
68.5% of the miRBase entries with the confirmation rate going up to 94.4% for the high-
confidence entries and 18.3% of the novel miRNA candidates. Analyzing endogenous miRNAs, 
we verified the expression of 8 miRNAs in 12 different human cell lines.  
 
In total, we extrapolated 2300 true human mature miRNAs, 1115 of which are currently 
annotated in miRBase V22. The experimentally validated miRNAs will contribute to revising 
targetomes hypothesized by utilizing falsely annotated miRNAs.  
 
There are still many unanswered questions regarding miRNAs. For example: 
 

 
13 https://www.researchgate.net/publication/338684968_miRNAS_REDUX  
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1. What initiates the generation of an miRNA. The 2300 or so miRNAs are present in some cells 
and not others, and why. 
 
2. What are the promoters and initiators of these miRNA transcriptions. Are there upstream 
genetic characteristics and elements that make for their transcription. 
 
3. miRNAs can inhibit transcribed mRNA thus inhibiting translation. What is the overall 
chemical reactivity of each which dominates. For example, if a cell can produce 1 miRNA per 
day but it can produce 2 mRNA per day, perhaps only half are blocked and there would be a de 
minimis effect. On the otherhand if the miRNA can survive the mRNA degradation then it has a 
perpetual existence. The reaction dynamics of this overall process is yet to be understood. 
 
4. In cancers, we have identified a set of miRNAs, many of which are common across a large set 
of malignancies. The question is; is the driver of the malignant process the miRNA or some 
upstream genetic action? 
 
5. Why do some cells activate miRNAs and others do not? 
 
6. Can we develop upstream and downstream maps for any miRNA? 
 
7. Is there a stochiometric system for the analysis of miRNA interactions? 
 
8. As miRNAs flow from the nucleus (as works in progress), what are the detailed steps by 
which they may be mitigated against. 
 
9. The relationships between the up and down stream elements and the related miRNAs have a 
dynamic characteristic where concentrations of each entity in such a chain could be 
characterized. Can this be ascertained and demonstrated? 
 
 10. Are miRNA, as well as up and down stream entities targetable by therapeutics and if so how. 
 
11. Targeting as above, what are the "unintended consequences" across homeostatic processes? 
 
12. miRNAs via exosomes or even directly can be effectors of metastasis. How is this 
accomplished and how can it be mitigated? 
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In this note our objective is to overview the miRNA status, examine the miRNAs for a set of 
malignancies, overview the methodology to measure these miRNAs and then to explore the 
options to link the measurements to diagnostic and prognostic measures. 
 
The challenges we see facing this effort clinically are: 
 
1. Identification of miRNAs and malignant states 
 
2. Measurement of the miRNAs in an effective and reasonable cot manner 
 
3. The ability to identify a specific lesion despite the prolific presence of miRNAs across many 
possible ones. 
 
4. The development of a metric which maps the miRNA measures into diagnostic and prognostic 
results by lesion type. 
 
 
  

miRNA generation

•What is the underlying driver 
to generate miRNA

miRNA release

•What process leades to the 
release and activation of the 
miRNA

miRNA intracell control

•What are the control 
mechanisms for intra‐cellular 
miRNA

miRNA extra cell

•What are the mechanisms for 
extracellular miRNA

miRNA vasation

•What process allows for the 
extra‐ and intra vasation

miRNA remote

•How does the miRNA induce 
remote metastatic behavior
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5 CANCERS 
 
We now examine the interaction of radiomic studies in the context of various malignancies. Our 
interest is not any specific image modality but an analysis by cancer of the options available and 
the processes which can be employed to obtain diagnostic data from the images.  
 
Now with these images, radiological, cytological, histological, and others we can find metrics 
which have been developed to stage and diagnose various organ growths. Classically these 
metrics relied upon features which the observer can identify and then use as a probable marker 
for a malignancy. For the most part no single market has optimum specificity and sensitivity.  
 
5.1 PROSTATE	
 
Prostate cancer is one of the highest occurring malignancies in men14. It generally is slow 
growing but also has the ability to hide itself due to less than adequate means of being identified. 
The PSA test has been used for nearly thirty years and it is somewhat satisfactory. It has been 
abashed by various Government groups because it is not perfect enough but it had saved lives. Its 
use has declined and in turn mortality has increased. We have argued that the research upon 
which the withdrawal of PSA is fatally flawed. We leave that for other arguments. 
 
5.1.1 The PSA Test 
 
We consider a simple test under current use. Namely the 4K Test15. The 4K test is described 
somewhat in the papers by Bryant et al (2015) and Stattin et al (2015) and also in the 4K web site 
as indicated. Basically, the following data is measured and entered: 
 

1. Total PSA, tPSA 
2. Free PSA, fPSA 
3. Intact PSA, iPSA16 
4. hk2 (or KLK2), hk2 
5. Age, A 
6. DRE, DRE 
7. Prior Biopsy Status, PBS 

 
Then a score is determined by a functional means as follows: 

 
14 https://www.researchgate.net/publication/264960277_Prostate_Cancer_A_Systems_Approach This is a 2013 
document. On the Research Gate website there are many more which bring much of this up to date. 
 
15 https://www.4kscore.com/ 
 
16 Note from the OPKO Brochure they state: The iPSA test is a sandwich (noncompetitive) immunoassay that 
employs two distinct mouse monoclonal antibody products. The capture probe is a biotinylated, recombinant His6-
Cys-tagged Fab fragment of the monoclonal antibody 5A10 with specificity for fPSA (of which iPSA is a 
component). The tracer is a Europium-labelled monoclonal antibody 4D4, with specificity to iPSA and complexed 
PSA (PSA-ACT). In combination, the reagents are specific for iPSA. 
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4 ( ) ( , , , 2, , , )Kf x f tPSA fPSA iPSA hk A DER PBS   

 
Just what that equation specifics are is considered proprietary. However the result is a number or 
percent that relates to a contemporaneous biopsy report. Namely 4Kf  equals: 

 
 4 Biopsy is Gleason 7 or higher and distant metastasisKf P n

n error

 


  

 
Namely the f number in a 4K measurement reflects the probability of there being an existing 
malignancy of considerable status and that the malignancy will lead to death in 20 years. The 
score goes from <1% to 95%. 
 
Now the ROC AUC for this test is 0.82.  
 
Let us examine this a bit from a statistical perspective. 
 
First let us look at the PSA alone. It may look as follows. 
 

Test Value

Distribution with 
No Disease

Distribution with 
Disease

P[D]=P[Say Disease | Disease Present]
P[FA]=P[Say Disease | No Disease Present]

 
Here we have a PSA threshold of say 4.0. Now with this test we have many diseased states 
below 4.0 and many non-diseased states above. The red curve is the distribution of PSA give a 
PCa and the black is the PSA with no PCa. We could vary the blue decision line to try to change 
things but when we do we see poor performance. We could plot the Sensitivity vs the 1-
Specificity of a PSA test as shown below: 
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Sensitivity=
P[Test says Disease | Actually Diseased]

1‐Specificity=
P[Tests says Disease | Actually No Disease]  

 
What this states is that as we try to get better detection we get poorer False Alarm rates. The red 
curve is almost linear and that means that if we want a 90% detection probability then we will 
suffer almost a 90% False Alarm rate. The measure of performance is the Area Under the Curve, 
AUC. The worst case AUC is a straight line, a coin toss if you will, and is 0.5. 
 
Now with 4K one alleges gets a better discriminant. We depict that situation below: 
 

P[D]
P[D]=P[Say Disease | Disease Present]

P[FA]
P[FA]=P[Say Disease | No Disease Present]  

 
Note that we now can get excellent Detection rates while suffering low False Alarm Rates. This 
means that the 4K tests look like the one below: 
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That is the distributions for disease and no disease are further apart and/or their variance or noise 
levels are lower.  
 
This means that we have a much greater AUC and 4K argues for an 0.82 or higher AUC. 
 
Now we may have some issues with 4K. On the positive side it has gone through many tests. On 
the negative side: 
 
1. It does not include temporal data. No velocity measurements are included. One may then ask 
if velocity is a key measure. As we have shown before, for example, HbA1c may affect PSA and 
perhaps that should be normalized. 
 
2. It avoids prostate volume. As we have also shown before volume is a key metric, just by 
definition. 
 
3. It ignores family history. That is strange since as is well known family history is a significant 
factor. 
 
4. Also recall that if the test says 1% probability of disease then we have: 
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Say Disease|Disease

Say Disease|No Disease

Say Disease|Disease Disease Disease|Say Disease Say Disease

Disease|Say Disease Say Disease
Say Disease|Disease

Disease

Disease|Say Dise

PD P

PFA P

but

P P P P

or

P P
P

P

or

P





  



     
 

         

 

 

Say Disease|Disease Disease
ase

Say Disease

Say Disease Say Disease|Disease Disease Say Disease|No Disease No Disease

Say Disease (1 )

Disease

P P

P

but

P P P P P

or

P PDp PFA p

where

p P



 

  


 

 
Thus is PD is high and PFA is low, which occurs with a large AUC, then PD is almost p. 
Likewise, PND, probability of no disease given disease, is likewise low if we say it is low. 
 
Yet the overall performance of the test is quite impressive.  
 
 
 
Heger Table: 
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Parameter Mean Cancer SD Cancer Mean 
Normal  

SD 
Normal 

K+ 5.73 3.84 8.03 4.08 
Na+ 13.18 8.12 10.62 4.38 
Cl- 9.12 6.98 9.98 4.14 
Uric acid 15.44 57.95 0.26 0.10 
Urea 38.66 18.42 23.79 12.26 
PSA 4.93 7.52 0.00 0.00 
Glucose 0.05 0.13 0.02 0.02 
Pyrogallol 0.08 0.21 0.00 0.00 
fPSA 17.46 2.12 0.00 0.00 
pH 6.05 0.75 6.49 0.32 
Creatinine 15.04 4.74 9.57 18.94 

 
5.1.2 mpMRI 
 
mpMRI has gained considerable acceptance in the diagnosis of PCa. As Stabile et al report: 
 
1. Multiparametric MRI (mpMRI) of the prostate is a novel promising tool for diagnosis of 

prostate cancer that might help to reduce overdiagnosis of insignificant prostate cancer. 
 
2. mpMRI should include four sequences: T1-weighted images, T2-weighted images, diffusion-

weighted images (DWI) and dynamic contrast-enhanced imaging (DCEI). 
 
3. Interpretation and reporting of mpMRI must be carried out following standardized scoring 

systems (such as Prostate Imaging Reporting and Data System (PI-RADS) v2). 
 
4. The use of mpMRI is considered useful; the use of mpMRI-targeted biopsy is increasing the 

detection of clinically significant prostate cancer in both biopsy-naive and previous negative 
biopsy settings. 

 
5. The use of mpMRI as a triage test is still controversial. In men with negative mpMRI, 

omitting a biopsy can only be considered when the clinical suspicion of prostate cancer is 
low. 

 
6. Improvements in inter-reader agreement, development of computer-aided diagnostic systems 

and assessment of biomarkers to use in combination with mpMRI are needed. 
 
Currently mpMRI scoring for PCa is done with PI-RADS17. PIRADS is a complex integrated 
system which rates the entire prostate in peripheral and transition zone. It may appear as follows: 
 
 
 

 
17 https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS  
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Peripheral Zone Transition Zone

DWI
1

DWI
2

DWI
3

DWI
4

DWI
5

PIRADS
1

2

3

4

5

T2
1

T2
2

T2
3

T2
4

T2
5

DCE ‐

DWI 1‐3

DWI 1‐4

 
 

 
 
where the entries are defined as18: Now it must be understood that the above PI-RADS does have 
significant margins of errors especially if there have been multiple previous biopsies. This seems 
to be due to the resulting scar tissues created which in many ways appear as a putative 
malignancy.  
 
The basis for interpreting mpMRI on diagnosing PCa is as follows: 
 
1. T2 WEIGHTED IMAGING (T2W) SCORE 
 
I. TRANSITION ZONE 
 
    1: normal appearing transition zone (rare) or a round, completely encapsulated nodule 
("typical nodule" of benign prostatic hyperplasia) 
    2: a mostly encapsulated nodule or a homogeneous circumscribed nodule without 
encapsulation ("atypical nodule"), or a homogeneous mildly hypointense area between nodules 
    3: heterogeneous signal intensity with obscured margins; includes others that do not qualify as 
2, 4, or 5 

 
18 https://radiopaedia.org/articles/prostate-imaging-reporting-and-data-system-pi-rads-1?lang=us  
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    4: lenticular or non-circumscribed, homogenous, moderately hypointense, and <1.5 cm in 
greatest dimension 
    5: same as 4, but ≥1.5 cm in greatest dimension or definite extra prostatic extension/invasive 
behavior 
 
For transition zone lesions, the overall PI-RADS assessment usually follows the T2W score, but 
scores of 2 or 3 can be upgraded by the DWI (see below). 
 
II. PERIPHERAL ZONE 
 
    1: uniform high signal intensity (normal) 
    2: linear or wedge-shaped hypointensity or diffuse mild hypointensity, usually indistinct 
margin 
    3: heterogeneous signal intensity or non-circumscribed, rounded, moderate hypointensity; 
includes others that do not qualify as 2, 4, or 5 
    4: circumscribed, homogenous, moderate hypointensity, and <1.5 cm in greatest dimension 
    5: same as 4 but ≥1.5 cm in greatest dimension or definite extra prostatic extension/invasive 
behavior 
 
For peripheral zone lesions, the T2W score is only used for the overall PI-RADS assessment if 
the DWI is inadequate or absent. Scores of 3 can be upgraded by presence of dynamic contrast 
enhancement. 
 
2. DIFFUSION WEIGHTED IMAGING (DWI) SCORE 
 
Signal intensity in the lesion is visually compared to the average signal of normal prostate tissue 
elsewhere in the same histologic zone. 
 
I. TRANSITION ZONE OR PERIPHERAL ZONE 
 
    1: no abnormality on ADC or high b-value DWI 
    2: linear/wedge shaped, hypointensity on ADC and/or hyperintensity on high b-value DWI 
    3: focal (discrete and different from background), mild/moderate hypointensity on ADC 
and/or mild/moderate hyperintensity on high b-value DWI; may be markedly hypointense on 
ADC or markedly hyperintense on high b-value DWI, but not both 
    4: focal, marked hypointensity on ADC and marked hyperintensity on high b-value DWI; <1.5 
cm in greatest dimension 
    5: same as 4 but ≥1.5 cm in greatest dimension or definite extra prostatic extension/invasive 
behavior 
 
For peripheral zone lesions, the overall PI-RADS assessment usually follows the DWI score, but 
a score of 3 can be upgraded by the presence of dynamic contrast enhancement (see below). 
 
For transition zone lesions with a T2W score of 2 or 3, a DWI score that is two higher (i.e. 4 or 
5, respectively) is used to upgrade the overall PI-RADS assessment by one point (i.e. to 3 or 4, 
respectively). 
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3. DYNAMIC CONTRAST ENHANCEMENT (DCE) 
 
   I.  (-) NEGATIVE:  
 
        no early or contemporaneous enhancement, or 
        diffuse multifocal enhancement not corresponding to a focal finding on T2W and/or DWI, 
or 
        focal enhancement corresponding to a lesion demonstrating features of benign prostatic 
hyperplasia on T2W (including features of extruded benign prostatic hyperplasia nodule in the 
peripheral zone) 
 
   II. (+) POSITIVE: 
 
        focal, and 
        earlier than or contemporaneous with enhancement of adjacent normal prostatic tissues, and 
        corresponds to suspicious finding on T2 and/or DWI 
 
For peripheral zone lesions with DWI score of 3, the presence of dynamic contrast enhancement 
is used to upgrade the overall PI-RADS assessment category to 4. 
 
The resulting categories are: 
 
PI-RADS™ v2.1 Assessment Categories 
 
PIRADS 1 – Very low (clinically significant cancer is highly unlikely to be present) 
PIRADS 2 – Low (clinically significant cancer is unlikely to be present) 
PIRADS 3 – Intermediate (the presence of clinically significant cancer is equivocal) 
PIRADS 4 – High (clinically significant cancer is likely to be present) 
PIRADS 5 – Very high (clinically significant cancer is highly likely to be present) 
 
From the work of Ghai and Haider we have the following mpMRI example. The note: 
 
A 55-year-old man with Gleason 7 (4 + 3) prostate cancer. (a) Axial T2-weighted image (T2WI) 
shows the normal hyperintense T2 signal in the peripheral zone (white arrow) from the high 
water content with cancer (black arrow) appearing as an area of low signal on T2WI. (b) 
Apparent diffusion coefficient map at the same level showing low signal from the restricted 
diffusion at the site of cancer (arrow)... 
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As Monti et al have recently noted: 
 
Recently, the use of a multiparametric Magnetic Resonance Imaging (mpMRI) approach, 
combining anatomic T1 or T2-weighted (T2W) images with functional MRI methods as Diffusion 
Weighted Imaging (DWI) and Dynamic Contrast Enhanced (DCE) imaging, provided substantial 
improvements in non-invasive prostate cancer detection and characterization.  
 
In fact, the imaging approach, besides its non-invasiveness, can give “in vivo” information on 
the entire tumor volume, thereby reducing inaccuracies due to sampling errors in 
histopathological analyses. The Prostate Imaging-Reporting and Data System (PI-RADS) was 
developed in 2013, and then updated in 2015 (PI-RADS v2) [5], in order to standardize the use 
of mpMRI in PCa imaging. This technology provides a scale indicating how likely an mpMRI 
finding from T2W, DWI, and DCE is related to a clinically significant cancer.  
 
The PI-RADS score ranges from one, which indicates a very low probability of malignancy, to 
five, which indicates a very high probability that a lesion is malignant. Since its introduction, the 
PI-RADS classification has played a very important role in PCa diagnosis, proving to be a useful 
tool for the detection of prostatic lesions and their characterization in terms of aggressiveness. 
However, due to its definition, PI-RADS scoring can be affected by subjectivity and inter-/intra-
operator variability, which are factors that may compromise PCa assessment. Moreover, it is not 
unusual to find benign and malignant lesions with similar imaging findings, making it 
challenging to detect the nature of prostatic lesions.  
 
It should also be considered that lesions classified as having a PI-RADS score of three are 
usually lesions termed as “intermediate” or “equivocal on the presence of clinically significant 
cancer”. The abovementioned limitations of PI-RADS, together with an ever-growing volume of 
medical images for each patient and the development of increasingly powerful image acquisition 
and processing techniques, have led to an increasing interest in new quantitative approaches to 
analyze mpMRI images  
Fehr et al have noted: 
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Our work demonstrates that PCa diagnosis can be improved by combining data-augmented 
classification together with more of the latent information in standard MRIs (the so-called 
“radiomics hypothesis”) (27, 28) compared with using ADC mean or T2 signal intensities alone, 
thereby reducing the potential for under- or overdiagnosis. Fig. 1 A and B show the ADC 
energy, ADC entropy, T2 energy, and T2 entropy overlaid on a slice of the ADC and 
corresponding T2-w MR image for two different patients: one with a tumor of GS 6ð3 + 3Þ and 
the other with a tumor of GS 9ð4 + 5Þ. …the energy and entropy values computed from different 
tumor types appear to be very different, which suggests that textures, in combination with ADC, 
can help to differentiate between the cancer type…  
 
Our results suggest that with sample augmentation, reasonably accurate classification with high 
sensitivity and specificity can be obtained, even for highly imbalanced data such as in the 
classification of cancer GS. Our work also showed that texture features computed from both 
ADC and T2-w images drastically improve the classification performance than just the ADC 
mean and T2 mean.  
 
Finally, incorporating the interaction of image features for feature selection followed by a 
classification method (RFE-SVM) achieved the highest classification accuracy.   
 
Wang et al have noted: 
 
Multiparametric (MP) magnetic resonance imaging (MRI) may improve the diagnosis and the 
care of PCa patients by providing morphological and functional information about the prostate. 
MRI sequences shown to correlate with properties associated with PCa include T2-weighted 
imaging (T2WI), diffusion-weighted imaging (DWI), MR spectroscopy, and dynamic contrast-
enhanced (DCE) MRI. MP-MRI is especially effective in revealing anterior prostate cancer in 
men with negative random transrectal 12- core biopsy . In such cases, MP-MRI is beneficial for 
selecting men who should undergo anterior biopsy. Such an approach increases the positive 
predictive power of PCa diagnosis . 
 
 It is therefore highly recommended that MP-MRI is used rather than a single MRI modality 
when assessing a patient for prostate lesions. By fusing endorectal coil MR images to a 
preprocedure TRUS using electromagnetic needle tracking, biopsies may be directed to 
suspicious lesions and the location of biopsies may be documented . Targeted prostate biopsy 
with MPMRI guidance has been shown to improve the sensitivity of prostate cancer detection 
when compared with random biopsy. MP-MRI/ultrasound image fusion reduces the number of 
required biopsies while also reducing the diagnosis of clinically insignificant cancer . Initially, 
endorectal coils were used during MP-MRI to increase the signal-to-noise ratio (SNR). 
However, as MP-MRI has become more widespread and technology has improved, endorectal 
coils are no longer consistently used and the costs associated with them are avoided .  
 
Futterer et al. found AUC to be significantly higher when endorectal coils were used when 
compared with pelvic coils. Similarly, Turkbey et al. found that more cancer foci were detected 
using dualcoil prostate MRI than when nonendorectal coil MRI was used at 3T . However, 
Bratan et al. contends this claim with findings that the field strength and the type of imaging 
coils used have no significant influence on the detection rate of tumors. 
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 As technology evolves it is likely that there will be a decreasing need for endorectal coils. 3. 
Computer Aided-Diagnosis for Prostate Cancer Interpreting MRI requires a high level of 
expertise and is time consuming. Significant interobserver variation and a lack of sensitivity, 
specificity, and accuracy exist for radiologists in interpreting the volume and stage of lesions in 
prostate MRI [36–38]. Multiparametric MRI T2WI ADC ꞏ ꞏ ꞏ  
 
Ktrans Registration Prostate CADx workflow Diagnosis results Classification Feature extraction 
Candidate generation Segmentation (prostate, central gland) Preprocessing (T2WI, ADC, 
Ktrans, etc.) Figure 1: Workflow of a typical prostate CADx system. Green rectangles indicate 
data (original scans and images after preprocessing); yellow rectangles indicate processes 
applied to the data or images. There is demand for an accurate computer aideddiagnosis 
(CADx) system that decreases reading time, reduces required expertise in radiology reading, 
and offers a consistent risk assessment of cancer presence in prostate MRI. Such a CADx system 
could automatically detect suspicious lesions in prostate MR images to help screen for prostate 
cancer in large patient populations. A typical CADx system for prostate cancer detection takes 
multiparametric MR images (MP-MRI), processes them, and generates a specific diagnostic 
result (e.g., a prediction map of the prostate showing regions with high probability to be cancer).  
 
There are some common components which are shared by prostate CADx systems such as 
feature extraction and classification  
 
Wang et al demonstrate a workflow for a prototypical PCa automated system as below: 
 

 
 
A recent result by Ahdoot et al has demonstrated the efficacy of the integrate approach. The 
authors note: 

mpMRI

Preprocessing

Registration Segmentation

Candidate Generation

Feature Extraction Classification

Diagnosis
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Among patients with MRI-visible prostate lesions, the addition of MRI-targeted biopsy to 
systematic biopsy increased the detection of clinically significant cancers (grade group ≥3) and 
led to a net decrease in the detection of clinically insignificant cancers. Although many of these 
benefits resulted from MRI-targeted biopsy alone, omission of systematic biopsy would have led 
to missing the diagnosis of 8.8% of clinically significant cancers. Furthermore, among the 
patients who underwent subsequent radical prostatectomy, combined biopsy was associated with 
the lowest rate of upgrading of the cancer grade group between biopsy and wholemount 
histopathological analysis. Collectively, these findings suggest that combined biopsy provides 
improved diagnostic accuracy over either systematic or MRI-targeted biopsy alone and better 
predicts the results of final histopathological analysis.  
 
However, the major lacking result was the percent who had PI-RADS of 3-5 who when biopsied 
showed no signs of malignancy. We feel that such a metric is essential and from clinical results it 
occurs especially in patients with multiple prior biopsies. 
 
5.1.3 US 
 
Ultrasound is used principally in prostate biopsy. Currently this is integrated with mpMRI 
images and its significantly improves the overall performance. 
 
5.1.4 Biopsy 
 
Prostate biopsies occur in two stages. First is the needle biopsy taken to assess the patient's 
condition and perform an initial staging. Second, upon removal of the prostate, if such is 
possible, then a final overall biopsy is performed. 
 
A benign view is shown below. Note the basal and luminal cells19. 
 

 
19 See Epstein Figure 3.4 for a benign prostate cell  
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The adenocarcinomas for various grades, Gleason, are shown below (from Epstein): 
 

 
Note that the increase in Gleason grading is reflected in a loss of structure and a movement to a 
diffuse sheet of tumor cells. 
 
5.1.5 Genomics 
 
Stoyanova et al have noted: 
 



DRAFT WHITE PAPER 
EIKONOMICS: RADIOMICS, GENOMICS, CANCER; 
DIAGNOSTIC AND PROGNOSTIC 

 

51 | P a g e  
 

Standard clinicopathological variables are inadequate for optimal management of prostate 
cancer patients. While genomic classifiers have improved patient risk classification, the 
multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The 
objective was to investigate the association of multiparametric (mp)MRI quantitative features 
with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues. Global 
gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies 
using an Affimetrix platform. Spatially distinct imaging areas (‘habitats’) were identified on 
MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal 
appearing tissues. We correlated 49 radiomic features with three clinically available gene 
signatures associated with adverse outcome.  
 
The signatures contain genes that are over-expressed in aggressive prostate cancers and genes 
that are under-expressed in aggressive prostate cancers. There were significant correlations 
between these genes and quantitative imaging features, indicating the presence of prostate 
cancer prognostic signal in the radiomic features. Strong associations were also found between 
the radiomic features and significantly expressed genes. Gene ontology analysis identified 
specific radiomic features associated with immune/inflammatory response, metabolism, cell and 
biological adhesion. To our knowledge, this is the first study to correlate radiogenomic 
parameters with prostate cancer in men with MRI-guided biopsy  
 
The overall procedure in PCa diagnosis can thus be indicated as follows: 
 

Prostate Volume Prostate Segmentation

mpMRI

Fusion MRI targets

Prostate Biopsies

Histopathology and Gene 
Expression

Normal Appearing Habitat

Delineation of tumor

Mapping biopsy location

Radiogenomics

From  Stoyanova et al

 
 
 
From the perspective of involved genes in PCA we have the list: 
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1. p53 
2. RB1 
3. AR 
4. PTEN 
5. MYC 
6. TMPRSS2:ETS 
7. TMPRSS2:ERG 
8. SPOP 
 
to name a few. There is also methylation issues and miRNAs as well. 
 
 
5.2 BREAST	
 
Breast cancer is the most significant cancer in women in the U.S. It is however like many 
cancers multifaceted. Ductal carcinoma in situ is often treated as aggressively as more advance 
forms. For decades now women have been asked to undergo breast exams in hopes of identifying 
the disease early. This seems to have worked but it also has identified DIC. 
 
As Kuhl had noted recently (2015): 
 
Breast imaging is special. Nowhere else, possibly with the sole exception of dedicated 
interventional radiology, is the radiologist as visible as in the breast imaging arena. Here, the 
radiologist is integrated in a multidisciplinary team, where he or she is recognized as a 
physician who assumes direct and personal patient responsibility and genuinely cares for 
patients. The radiologist may accompany a woman for many years for screening. When signs or 
symptoms of breast cancer arise, or in case a screening abnormality is found, the radiologist will 
be the first to discuss these findings with the patient and her family. It is usually the radiologist 
alone who decides whether biopsy is needed or not.  
 
He or she will then do the biopsy and discuss the pathology results with the patient, her family, 
and other health care providers. The radiologist is experienced in communicating to a patient 
and her family that breast cancer is present, and knows how to respond to sorrow and anxieties. 
The radiologist will then, often enough, be asked to help find a breast surgeon for the patient and 
will thus become a referring physician for other disciplines.  
 
5.2.1 Classic Methods 
 
The classic method of identifying breast cancer is via plain film x rays albeit using flat screen 
capture methods. As Kuhl et al (2005) had noted: 
 
Mammography alone, and also mammography combined with breast ultrasound, seems 
insufficient for early diagnosis of breast cancer in women who are at increased familial risk with 
or without documented BRCA mutation. If MRI is used for surveillance, diagnosis of intraductal 
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and invasive familial or hereditary cancer is achieved with a significantly higher sensitivity and 
at a more favorable stage.  
 
Thus the use of MRI, especially mpMRI is highly suggestive. 
 
5.2.2 mpMRI 
 
mpMRI, as we have discussed is a complex imaging technique that combines the three elements 
of T2 scans, diffusion determination, and dynamic contrast tracking in an attempt to identify 
lesions.  
 
From Fan et al: 
 
The purpose of this study was to investigate the role of features derived from breast dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI) and to incorporated clinical 
information to predict the molecular subtypes of breast cancer. In particular, 60 breast cancers 
with the following four molecular subtypes were analyzed: luminal A, luminal B, human 
epidermal growth factor receptor-2 (HER2)-over-expressing and basal-like. The breast region 
was segmented and the suspicious tumor was depicted on sequentially scanned MR images from 
each case. In total, 90 features were obtained, including 88 imaging features related to 
morphology and texture as well as dynamic features from tumor and background parenchymal 
enhancement (BPE) and 2 clinical information-based parameters, namely, age and menopausal 
status. An evolutionary algorithm was used to select an optimal subset of features for 
classification.  
 
Using these features, we trained a multi-class logistic regression classifier that calculated the 
area under the receiver operating characteristic curve (AUC). The results of a prediction model 
using 24 selected features showed high overall classification performance, with an AUC value of 
0.869. The predictive model discriminated among the luminal A, luminal B, HER2 and basal-like 
subtypes, with AUC values of 0.867, 0.786, 0.888 and 0.923, respectively. An additional 
independent dataset with 36 patients was utilized to validate the results. A similar classification 
analysis of the validation dataset showed an AUC of 0.872 using 15 image features, 10 of which 
were identical to those from the first cohort. We identified clinical information and 3D imaging 
features from DCE-MRI as candidate biomarkers for discriminating among four molecular 
subtypes of breast cancer. 
 
In addition Kuhl (2015) had noted: 
 
Since tumor biology (molecular subtyping) has replaced previous criteria for prognostic 
evaluation as well as previous concepts for treatment allocation, there is a growing interest in 
establishing innovative breast imaging methods, in particular, contemporary magnetic 
resonance–based in vivo imaging biomarkers, to help classify tumor biology. Such techniques 
are diffusion-weighted imaging (DWI) and its derivatives like diffusion kurtosis imaging and 
intravoxel incoherent motion imaging, DCE-MRI and its kinetic analyses, and 1H or 31P MR 
spectroscopy, all of which can be combined into so-called multiparametric (mp) breast MRI 
protocols.  
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For instance, specifically high-grade tumors or tumors with high (Ki-67) proliferation fraction 
are usually hypercellular compared with surrounding normal breast tissue, which translates into 
restricted diffusion of free water molecules on DWI. Mori et al50 have indeed shown that ADC 
values correlate with proliferation rates in luminal-B cancers. The increased cellular (i.e., 
membrane) turnover in rapidly growing tumors will lead to a detectable choline peak in proton 
MR spectroscopy. Tumors need to maintain this growth by increasing their local supply with 
oxygen and nutrients.  
 
This is achieved by releasing peptides like vascular endothelial growth factor that induce local 
angiogenesis. Angiogenesis leads to a fundamental change of a tumor's microvascular 
architecture, with sprouting of existing vessels as well as development of de novo formed vessels, 
usually with fenestrated vessel wall linings that go along with increased vessel permeability. The 
increased metabolic turnover leads to an increased amount of toxic waste products that are 
removed through dilated drainage veins.  
 
The increased perfusion leads to the well-known strong and early enhancement in DCE-MRI, 
and the increased permeability, together with the efficient venous drainage, cause the washout 
time course that is characteristic of breast cancer.18,62 It has been shown that DCE-derived 
enhancement kinetics correlate with estrogen receptor status, HER2- status, nuclear grade/Ki-
67, and epidermal growth factor receptor expression. The increased permeability leads to 
leakage of larger molecules such as proteins from the intravascular to the interstitial space, 
which will increase the oncotic (colloid-osmotic) pressure within the cancer, a fact that drags 
water from the intravascular into the interstitial space and thus increases the interstitial water 
volume fraction. This, in turn, will correlate with a cancer's signal in T2-weighted imaging. If 
angiogenesis fails or is insufficient to reach the innermost cell layers of a cancer, then hypoxia 
will occur, again detectable through the tumor's internal architecture of enhancement in DCE-
MRI (rim enhancement), or through blood oxygenation level dependent contrast MRI.  
 
Since the pulse sequences that provide such “functional” information are usually associated 
with borderline signal-to-noise ratio, use of higher magnetic fields such as 3.0 T or, more 
recently, even 7.0 T, promises an even more accurate and extensive assessment of tumor biology. 
Visualization of such functional information is useful in clinical practice for a number of 
purposes.  
 
First, it can be exploited for further differential diagnosis of enhancing lesions seen in breast 
MRI, that is, for the further differentiation of benign, high-risk, and malignant lesions in breast 
MRI. The combination of high-resolution cross-sectional morphology, enhancement kinetics, a 
lesion's signal in T2-weighted images and in DWIs leads to a high specificity and positive 
predictive value of contemporary breast MRI protocols. Even regular 1.5-T breast DCE-MRI 
protocols are inherently “multiparametric” compared with, for example, mammography or 
DBT. The diagnostic accuracy achieved with such protocol is sufficient to be used for so-called 
problem solving. Accordingly, and in contrast to currently held beliefs, we have recently shown 
that breast MRI can indeed be used to definitely settle screen-detected mammographic or 
ultrasound findings and thus help avoid unnecessary biopsy. 
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Second, such functional imaging methods promise to provide additional independent diagnostic 
information that adds to our understanding of a cancer's ability to grow and metastasize. The 
current focus on tumor genomics ignores the fact that successful tumor growth does not only 
depend on a tumor's genomic toolbox but also on its microenvironment, that is, features of the 
tissue that hosts the cancer. The interaction between a cancer and its microenvironment, and the 
degree to which a cancer is successfully shaping its environment to sustain its growth, are 
probably best assessed by noninvasive in vivo functional imaging. Accordingly, we propose that 
in the future, such mp MRI techniques will be used to help amend the assessment of a tumor's 
aggressiveness and its biologic and prognostic importance.  
 
Third, an established clinical situation where mp breast MRI is used is to monitor response to 
systemic treatment.  
 
5.2.3 Biopsy and Images 
 
We show some of the biopsy images and radiation images as follows. Below we show a 
histological slide of breast cancer20. 
 

 
 

 
20 See Kumar et al, Fig 19.29 
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Now we can also consider a single lesion as shown below and examine how we can process it for 
a discriminant. First the lesion: 

 
 
Using image enhancements we show below the edge profiling of the previous slide. This 
processed image may thus be one of several images processed to be used in an identifier. 
 

 
 
 
This processing is an example of image reduction. Here the reduction is quite complex. 
An x ray image is shown below. This is typical showing a lesion. This is a prominent lesion and 
most likely somewhat advanced. 
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Below we show the line version of the previous lesion. This may then be a useful image process 
for analysis of a neural net input. The image reduction by line enhancement here actually allows 
for better clarification. It also presents an easier method to perform a pattern recognition. 
 

 
 
Now from Winfield et al we have a discussion integrating the biopsy with mpMRI: 
 
In breast cancer, the addition of normalized ADCs to 3D T1-w and DCE-MRI data improves 
diagnostic performance (AUC 0.98 vs 0.89). The value of parameter combinations has been 
confirmed in other studies: analysis of 100 breast lesions (27 malignant and 73 benign) in 77 
women showed that ADC is lower for lesions exhibiting predominantly washout or plateau 
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patterns than those exhibiting predominantly persistent enhancement, and in multivariate 
analysis, worst curve type and ADC were significant independent predictors of malignancy. 
Extension of mpMRI to 3 parameters (DCE-MRI, DW-MRI, and 3D 1H-MRSI) rather than 2 
(DCE-MRI and DW-MRI) showed that the former yielded significantly higher areas under the 
curve than histology (0.936 vs 0.808) because of elimination of false negative lesions and 
reduction in false-positives.  
 
Seven features derived from DW-MRI and DCE-MRI (e.g, slope, entropy, ADC) have been 
shown to discriminate malignant from benign lesions and their combination achieves the highest 
classification accuracy. The use of multiple parameters from DCE-MRI alone has illustrated the 
possibilities of identifying intrinsic imaging phenotypes of breast cancer based on hierarchical 
clustering of extracted feature vectors. These features have been linked to risk of recurrence 
based on gene expression.  
 
5.2.4 Neural Nets 
 
Neural nets have been examined in breast cancer diagnosis. As Sun et al have recently noted: 
 
Breast cancer is the leading malignancy in females. Axillary lymph node (ALN) metastasis status 
is one of the most important factors in guiding treatment decision making in breast cancer. 
Traditionally, the nodal status was assessed by surgical methods such as sentinel lymph node 
biopsy (SLNB) and axillary lymph node dissection (ALND). According to the guideline from 
American Society of Clinical Oncology, SLNB is considered to have a high overall accuracy 
ranging from 93 to 97.6% with a relatively low false negative rate (FNR) ranging from 4.6 to 
16.7% in detecting axillary metastasis. However, these surgical approaches have been 
considered controversial due to the invasiveness, potential complications, and possible 
overtreatment. Ultrasound is a widely-used tool in breast cancer assessment as it is non-
invasive, radiation-free, real-time and well-tolerated in women.  
 
Previous studies have shown that axillary ultrasound (AUS) may provide useful information 
relevant to ALN status in breast cancer. However, AUS alone has moderate sensitivity and may 
not be a reliable predictor for nodal metastasis. Recently, imaging-based machine learning 
approaches have been demonstrated promising in cancer diagnosis. There are two most popular 
machine learning approaches: radiomics analysis and convolutional neural networks (CNN). 
Radiomics analysis relies on a pipeline including extraction of numerous handcrafted imaging 
features, followed by feature selection and machine learning-based classification.  
 
Handcrafted radiomics features extracted from the breast tumor area have been demonstrated 
predictive in ALN metastasis, with FNRs ranging from 13.9 to 25% (9, 10). However, 
handcrafted features are limited to the current knowledge of medical imaging, which may limit 
the potential of the predictive model. Deep learning improves this handcrafted pipeline by 
automatically learning discriminative features directly from images. Recent studies have 
shown that deep CNN-based approaches can achieve state-of-the-art performance in lesion 
detection and cancer diagnosis. To our knowledge, no studies have assessed breast 
ultrasound-based CNN in predicting ALN status for breast tumor. Most studies have focused 
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on mining predictive imaging features within the tumor, while the surrounding tissues were 
ignored.  
 
Previous evidence has shown that the peritumoral region—the tumor-adjacent parenchyma 
immediately surrounding the tumor mass—may offer valuable outcome associated information. 
Two recent studies have demonstrated that handcrafted imaging features from peritumoral 
region in Dynamic Contrast-Enhanced MRI (DCE-MRI) are associated with sentinel lymph node 
metastasis and pathological complete response to neoadjuvant chemotherapy in breast cancer. 
Here, we hypothesize that deep CNN built based on intra- and peritumoral regions in breast 
ultrasound could provide relevant information in predicting ALN status. We are interested in 
comparing the performance of deep CNNs and radiomics models. Additionally, breast cancer 
can be classified into different molecular subtypes with distinct prognosis and respond 
differently to specific therapies.  
 
Therefore, we further assessed if deep CNNs or radiomics models combining imaging features 
and molecular subtypes could offer improved accuracy. In this hypothesis-driven study, we first 
developed deep CNNs and radiomics models based on intratumoral, peritumoral, and combined 
regions in breast ultrasound images for predicting ALN metastasis. We then aimed to find out 
how on each region deep CNNs performed compared with radiomics models  
 
We show a set of histology slides processed in the above manner. First the normal slide: 
 

 
 

Second below is a closer examination of specific cells. 
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Third below is the above using a processed line analysis of the lesion. This makes for a much 
easier configuration of analyze. 

 

 
 
As Araujo et al have noted regarding convolutional neural networks on histological studies: 
 
A CNN-based approach for the classification of H&E stained histological breast cancer images 
is proposed. All relevant features are learned by the network, reducing the need of field 
knowledge. Images are classified as either normal tissue, benign lesion, in situ carcinoma and 
invasive carcinoma. Alternatively, a binary classification as carcinoma or non-carcinoma is also 
performed. For this, the architecture of the network is designed to extract information from 
different relevant scales, including nuclei and overall tissue organization. The network is trained 
on an augmented patch dataset and tested on a separate set of images.  
 
Both dataset augmentation and scale-based network design have been shown important for the 
success of the approach. The extracted features are also used for training a SVM classifier. Both 
CNN and SVM classifiers achieve comparable results. The proposed classification scheme 
allows to obtain high sensitivity for carcinoma cases, which is of interest for pathologists. The 
performance of our system is similar or superior to the state-of-the-art methods, even though a 
smaller and more challenging dataset is used. Finally, since the network is designed to consider 
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multiple biological scales, the proposed system can be extended for whole-slide breast histology 
image classification relevant for clinical settings.  
 
The approach appears to function well on these types of cells. In a broader sense the work by 
Parekh et al note: 
 
A new paradigm is beginning to emerge in Radiology with the advent of increased computational 
capabilities and algorithms. This has led to the ability of “real time” learning by computer 
systems of different lesion types to help the radiologist in defining disease. In particular using 
deep learning algorithms to segment and classify different radiological images. We chose to use 
multiparametric magnetic resonance imaging (mpMRI) parameters which capitalize on the 
different contrasts of tissue.  
 
For example, using conventional and advanced MRI parameters of T1- and T2-weighted, 
diffusion weighted imaging (DWI) and dynamic contrast enhanced imaging (DCE) provide 
qualitative and quantitative information of different tissue types which can be used to construct 
“tissue” signatures information of tissue 1-4. Therefore, to integrate mpMRI and characterize 
breast tissue, we have developed a machine learning method coupled with deep learning for 
segmentation and characterization of breast tissue using mpMRI.  
 
Deep learning networks (DLN) allow for the “learning” of radiological relationships between 
different tissue types and provides new methods to “segment” and/or classify high-dimensional 
data sets5-11. These DLN algorithms allow for accurate and reliable prediction of tissue types 
from “raw” input images with the aim to improve the radiologist’s clinical decision support in 
different diseases12- 15 . Therefore, we implemented an unsupervised deep learning system 
based on stacked sparse autoencoders (SSAE). Autoencoders are unsupervised neural networks 
that are trained to create a compact or a low dimensional representation of its input via the 
hidden layer 7,9,16,17. The stacked sparse autoencoder network (SSAE) is a stack of sparse 
autoencoders with each autoencoder forming a layer of the SSAE.  
 
This allows us to use deep learning to develop multiparametric breast tissue signatures across 
subjects, without prior knowledge of the lesion type for application to patients for tissue 
segmentation and classification of breast lesions…Utilizing multiparametric deep learning 
network, we have developed, tested, and validated a cognitive computing platform that 
organizes, integrates, and interprets imaging information using a MPDL tissue signature model. 
The application of the MPDL tissue signature model resulted in excellent segmentation and 
classification of different tissue classes.  
 
This study employed an integrated multiparametric breast MRI deep learning model in the 
clinical setting and demonstrates that MPDL tissue signatures defines benign and malignant 
tissue and performs accurate classification. Moreover, this report demonstrates that deep 
learning-assisted unsupervised segmentation using mpMRI signatures can detect heterogeneous 
zones within breast lesions. These heterogeneous regions can be used for further classification of 
breast tissue by quantitative ADC maps and/or PK-DCE parameters. Finally, the MPDL model 
with machine learning classification distinguished between benign and malignant tissue with 
high sensitivity, specificity, and accuracy.   
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5.3 THYROID	
 
Thyroid cancer is not as high and incidence as is many other cancers21. However with the 
expanded use of ultrasound the incidence is growing more rapidly than any other cancer. Yet the 
mortality has remained low. Most mortality from thyroid cancer is the result of advanced forms, 
especially anaplastic which is one of the most aggressive forms with near 100% mortality in 
three to six months. Thus thyroid cancer is a broadly defined malignancy. The question then is; 
how does one diagnose this form of cancer. We progress from ultrasound, through genomics and 
cytology. All present somewhat unique challenges and both ultrasound and cytology present 
challenging pattern recognition opportunities. 
 
5.3.1 Ultrasound 
 
The thyroid is near the surface of the body and is highly amenable to ultrasound examination. In 
fact US examination is the most cost effective diagnostic tool available. It is not dispositive of a 
malignancy but is highly suggestive. Below is a table of typical landmarks found in US scans. 
 

Characteristic Sensitivity Specificity 
Hypoechoic c/w surrounding thyroid 81% (48-90%)  53% (36-92%) 

Marked hypoechogenicity c/w strap 
muscle 

41% (27-59%)  94% (92-94%) 

Microcalcifications 44% (26-73%)  89% (69-98%) 
Macrocalcifications 10% (2-17%)  94% (84-98%) 

Absence of halo 66% (33-100%)  43% (30-77%) 

Irregular, microlobulated margins 55% (17-84%)  80% (62-85%) 
Solid consistency 86% (78-91%)  48% (30-58%) 
Taller-than-wide shape on 
transverse view 

48% (33-84%)  92% (82-93%) 

 
A typical US of a thyroid nodule is shown below evidencing many of the features consistent with 
a suspicious node. 
 
 

 
21 See: https://www.researchgate.net/publication/335404502_Thyroid_Cancer_and_Genetic_Differentiation , 
https://www.researchgate.net/publication/331935614_Thyroid_Cancer_Seek_and_Ye_Shall_Find 
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Statistically we can summarize these characteristics in the following chart. 
 

 
 
Note that we have normalized the ones where it is malignant to 100% to give the relative 
frequency to the same measure when there is no malignancy. We then plot the sensitivity and 
specificity below: 
 

Hypo
Marked
Hypo

Microcal Halo Irregular Solid Taller

P[M|M] 100% 100% 100% 100% 100% 100% 100%

P[M|Null] 23% 144% 127% 52% 82% 16% 108%
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TI-RADS is the set of metrics which are used with thyroid US to assess if the lesion is 
suspicious. It is similar to the PI-RADS used in PCa. From Tessler et al, we have the following 
summary for TI-RADS: 
 
 

Composition

 Cystic  0 points
 Spongiform  0 

points
 Mixed Cystic   1 

point
 Solid or near solid  

2 points

Echogenicity

 Anechoic  0 points
 Hyperechoic or 

isoechoic  1 point
 Hypoechoic  2 

points
 Very hypoechoic  3 

points

Shape

 Wider than tall  0 
points

 Taller than wide  3 
points

Margin

 Smooth  0 points
 Ill‐defined  0 points
 Lobulated  2 points
 Extrathyroidal  3 

points

Echogenic Foci

 None  0 points
 Macrocalcifications  

1 point
 Peripheral 

calcifications  2 
points

 Punctate echogenic 
foci  3 points

TR1
Benign

TR2
Not 

Suspicious

TR3 
Mildly

Suspicious

TR4
Moderately
Suspicious

TR5
Highly

Suspicious

Add

0 points 2 points 3 points 7 or more4‐6 points
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The following is a sample US analysis of a patient with multiple nodules. It yields a TR3 level. 
However it is also the case that when there are multiple nodules even at this level the risk of a 
malignancy is reduced.  
 

Semantic feature Variations Value Nodule 1 Nodule 2 Nodule 3 
            

Size     
1.7 by 0.7 

by 1.3 
1.5 by 1.0 

by 1.0 
0.8 by 0.8 

by 1.1 

      
Right 
Upper 

Right 
Middle 

Right 
Lower 

            
Composition           
  Solid 2       

  
Predominantly 
Solid 1 1 1 1 

  
Predominantly 
Cystic 0       

  Cystic 0       
  Spongiform 0       
            
Echogenicity           
  Anechoic 0       
  Hyperechoic 1   1 1 
  Isoechoic 1       
  Hypoechoic 2 2     
  Very hypoechoic 3       
            
Shape           
  Taller than wide 3       
  Wider than tall 0 0 0 0 
            
Border           
  Smooth 0 0 0 0 
  Irregular 2       
  Lobulated 2       
  Ill defined 0       
            
Halo           
  Present         
  Absent         
            
Extrathyroidal 
extension           
  Present 3       
  Absent 0 0 0 0 
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Semantic feature Variations Value Nodule 1 Nodule 2 Nodule 3 
Punctate echogenic 
foci           
  Present 3       
  Absent 0 0 0   
            
Macrocalcifications           
  Present 1       
  Absent 0       
            
Peripheral 
calcifications           
  Present 2       
  Absent 0       
            
Comet-tail artifacts           
  Present 0 0     
  Absent 0       
            
Score     3 2 2 

 
 
Thus if we were to consider ways to automate these measurements we have multiple means and 
methods. For example let us consider two: 
 
1. Pattern Recognition: In this approach we start with the identifying patterns as given. Then we 
must process the image to extract the patterns. 
 
2. Neural Network: Let us assume a supervised neural network. Namely we assume we know the 
diagnosis and we have for each image a well-defined diagnosis. Then we may use a multilayer 
NN and have it trained so that when presented with a new US it can classify it as a score of say 1 
to 7. The image is scanned via some form of convolutional NN, CNN, and based upon extensive 
training we can assess any unknown. 
 
5.3.2 Genomic Analyses 
 
A genomic analysis is not a radiomic test but it can be used in conjunction. However, radiomic 
tests in general, including histological and cytological are morphological and are in a sense 
reflective of the underlying genomic structure. Regrettably the linkage between morphology and 
genomics is still weakly understood and thus each reflects a somewhat orthogonal direction. 
 
The following Table demonstrates the genomic profiles of various TCa. 
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FA HCA NIFTP FTC HCC PTC PDTC ATC MTCa 

P
oi

nt
 m

ut
at

io
ns

 a
nd

 in
de

ls
 

BRAF V600E, %         0 40-45 5-30 10-45 <5 

RAS, % 20-30 10-20 30-40 40-50 10-20 20 20-40 20-40 10-15 

EIF1AX, % 10-20 10-15 5-10 10-15 10-15 <5 10 10   

PTEN, % 10-15 
  

-5 10-15 10-15 <3 5-20 10-15 
  

DICER1, % 10-15   -5 10-15   <5       

7P53, %       <10 15-20 <5 10-30 50-70 <5 

TERT, %       15 10-20 5-10 30-50 70   

PIK3CA, % <5     <5   <5 5-20 5-18   

AKT1, %             <5 <5   

RET, % 
                

40-50 

La
rg

e-
sc

al
e 

al
te

ra
tio

ns
 

F
usions 

RET/PTC, %           5-10 <5 <1   

PPARG, % 5-10   20-30 10-20   <5 5-7 <1   

NTRK1/3, %           <5 1-5     

ALK, %           <5 5-10 <5 2 

THADA, % 5-10   20-30 <5   5       

Somatic copy 
number alterations, 

% 
20-40 40-50 20 40-50 70 5-10 50 90 20 

 
5.3.3 Cytological Analyses 
 
The third form of diagnostic analysis is cytological, both worth fine needle aspirations, FNA, and 
that of the excised tumor mass. The papillary form of TCa is interesting in that its diagnosis is a 
cellular diagnosis of specific forms and presentations. Unlike say PCa, where there is a 
proliferation of basal and or luminal cells, TCa has proliferation in the follicular form, and a 
papilla like growth in the papillary form, but the dispositive elements are those of how the cell 
appears, as we will show below. 
 
Basically the thyroid cells is the outer side of a thyroid follicle. It is the boundary. This is shown 
below for a simple thyroid boundary. The cells on the boundary are well behaved and connected. 
Cell interfaces such as E-cadherin stabilize these cells. Internally to this glandular structure is a 
collagen internal fill. From this colloid under the pituitary control the T3 and T4 hormones are 
released. From this is the basis of the thyroid control path. 
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Now the thyroid gland is a compilation of these follicles as shown below. There are blood organs 
between the follicles and also C cells, cells separate from those that form the effective gland. The 
highly simplistic view is seen below. 
 

 
 
 
Inside is the collagen material used by the cells to produce T3 and T4. 
 
The normal thyroid cells are shown below (From Epstein, Biopsy Interpretation of the Thyroid).  
The separate cells for enclosures which contain colloid and then it is processed and released by 
the cell. Surrounding the cell is and there are blood networks throughout the thyroid providing 
the cells with their requirements and transporting the cell products. 
 

 
 
Further specific detail of a follicle is shown below (again from Epstein). Note the clarity and 
simplicity as well as structure of the cells in each small gland portion: 
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Note that the cells are well demarcated and organized. Now as we shall see, several variations 
occur as the cell becomes malignant. Growth results in a proliferation of cells, everywhere, loss 
of adhesion via EMT results in cell dislocation, and the morphology of individual cells change as 
well. 
 
5.3.3.1 Papillary	Growth	
 
Now papilla are the small bumps or perturbances of the normal cells which generally are 
somewhat uniform as we have depicted. 
 
The papillary like cells are shown as below: 
 

 
 
The above show the papilla, the bumps or offshoots. It can be argued that this papilla formation 
is a result of a quasi-EMT process where the E-cadherin bond structure is starting to deteriorate. 
Namely the genetic control of this is breaking down because of the suppression of the pathways 
that control epithelial like structure22. Now as Nucera and Pontecorvi have noted: 

 
22 See McGarty, EMT and Cancers, January 2019, 
https://www.researchgate.net/publication/330222973_EMT_and_Cancers  
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Most human thyroid cancers are differentiated papillary carcinomas (PTC). Papillary thyroid 
microcarcinomas (PTMC) are tumors that measure 1 cm or less. This class of small tumors has 
proven to be a very common clinical entity in endocrine diseases. PTMC may be present in 30-
40% of human autopsies and is often identified incidentally in a thyroid removed for benign 
clinical nodules.  
 
Although PTMC usually has an excellent long-term prognosis, it can metastasize to neck lymph 
nodes; however deaths related to this type of thyroid tumor are very rare. Few data exist on 
molecular pathways that play a role in PTMC development; however, two molecules have been 
shown to be associated with aggressive PTMC.  
 
S100A4 (calcium-binding protein), which plays a role in angiogenesis, extracellular matrix 
remodeling, and tumor microenvironment, is over-expressed in metastatic PTMC. In addition, 
the BRAFV600E mutation, the most common genetic alteration in PTC, is present in many 
PTMC with extra thyroidal extension and lymph node metastasis.  
 
The above observation is interesting. Namely that almost 40% of people will be harboring small 
PTCs which unless sampled by a good ultrasound examiner would never be found. Furthermore 
they would never grow. They also note regarding the papillary growth above: 
 
BRAFV600E triggers a cascade that leads to human papillary thyroid microcarcinoma (PTMC) 
proliferation. The constitutive kinase activity of BRAFV600E phosphorylates and activates 
MEK1/2. Phospho-MEK1/2 induces hyperphosphorylation of ERK1/2 which translocates into the 
nucleus, triggering cell cycle progression, and abnormal cell proliferation by up-regulating 
cyclins (e.g., Cyclin D1) crucial for the checkpoint machinery in G1-S phases and inhibiting 
anti-cell cycle cyclins (e.g., p27). Up-regulation of cyclins (e.g., Cyclin D1) leads to hyper-
proliferation of papillary thyroid microcarcinoma cells and increase in papillae size.  
 
Now there are several additional and specific histological characteristics. For example, as Das 
notes23: 
 
Psammoma bodies (PBs) are concentric lamellated calcified structures, observed most 
commonly in papillary thyroid carcinoma (PTC), meningioma, and papillary serous 
cystadenocarcinoma of ovary but have rarely been reported in other neoplasms and 
nonneoplastic lesions. PBs are said to represent a process of dystrophic calcification.  
 
Despite numerous ancillary studies over a span of three and half decades, formation of PBs 
remains a poorly understood mechanism. Ultrastructural study of PTC has shown that 
thickening of the base lamina in vascular stalk of neoplastic papillae followed by thrombosis, 
calcification, and tumor cell necrosis leads to formation of PBs. Studies on serous 

 
23 Note: A psammoma body is a round collection of calcium, seen microscopically. The term is derived from the 
Greek word ψάμμος (psámmos), meaning "sand". 
 



DRAFT WHITE PAPER 
EIKONOMICS: RADIOMICS, GENOMICS, CANCER; 
DIAGNOSTIC AND PROGNOSTIC 

 

71 | P a g e  
 

cystadenocarcinoma of ovary and meningioma, however, revealed that collagen production by 
neoplastic cells and subsequent calcification was responsible for the formation of PBs.  
 
The existence of some precursor forms of PBs was reported in meningiomas and more recently 
in PTC, which were mostly in the form of extracellular hyaline globules surrounded by well-
preserved neoplastic cells or in a smaller number of cases intracytoplasmic bodies liberated 
from intact tumor cells.  
 
Cellular degeneration and necrosis, leading to the disappearance of neoplastic cells, were 
noticed by us only around PBs but not around the precursor forms. Based on the above findings, 
it is suggested that rather than being the outcome of dystrophic calcification of dead or dying 
tissue, PBs may indeed represent an active biologic process ultimately leading to 
degeneration/death of tumor cells and retardation of growth of the neoplasm. It may also serve 
as a barrier against the spread of neoplasm.  
 
We show psammoma bodies below. 
 

 
 
An additional example of specific histological characteristics is one with clear nuclei as shown 
below: 
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Another example of one type of papillary carcinoma is one with "Orphan Annie" eyes, the wide 
open white eyes of the nucleus in the cells below. 
 

 
 
Note also the well demarcated papillary form with outstretches of the otherwise well-structured 
cell. 
 
Finally an added one is cells with nuclear grooves is  a characteristic that is part of this diagnosis 
as shown below: 
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These are small notches seen in the side of the nucleus. 
 
Now these are what a trained histopathologist would be looking for. However, an underlying 
question is; why are they present and what causes these specific characteristics. We frequently 
see in medicine the answers to what but not why. Some of these answers are yet to be 
determined. 
 
5.3.3.2 Follicular	Growth	
 
In contrast to follicular carcinoma, where the boundary patency gets deformed, follicular 
carcinoma is where there is a proliferation of the follicular cells. 
 
Baloch and LiVolsi have noted: 
 
Follicular carcinoma comprises about 5% of thyroid cancers; however, in iodide-deficient 
areas, this tumor is more prevalent making up 25-40% of thyroid cancers. The true incidence of 
follicular carcinoma is difficult to determine since the follicular variant of papillary carcinoma 
may still be placed into this category. Risk factors include iodine deficiency, older age, female 
gender, and radiation exposure (although the relationship of radiation to follicular carcinoma is 
far less strong than with papillary cancer).  
 
Clinically, follicular carcinoma usually presents as a solitary mass in the thyroid. Follicular 
carcinoma has a marked propensity for vascular invasion and avoids lymphatics; hence, true 
embolic lymph node metastases are exceedingly rare. Follicular carcinoma disseminates 
hematogenously and metastasizes to bone, lungs, brain, and liver … 
 
What are the minimum criteria for making this diagnosis? Invasion of the capsule, invasion 
through the capsule, and invasion into veins in or beyond the capsule represent the diagnostic 
criteria for carcinoma in a follicular thyroid neoplasm. The criterion for vascular invasion 
applies solely and strictly to veins in or beyond the capsule, whereas, the definition of capsular 
invasion is controversial. Some authors require penetration of the capsule to diagnose a 
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follicular tumor as carcinoma, while others need tumor invasion through the capsule into the 
surrounding normal thyroid.  
 
Is capsular invasion insufficient for the diagnosis of follicular cancer? Distant metastases have 
been reported in follicular carcinoma diagnosed only on the basis of capsular and not vascular 
invasion, however, in some cases, metastases were already present at initial diagnosis. The 
presence of vascular invasion is also indicative of malignancy in a follicular tumor. Invasion of 
vessels within or beyond the lesional capsule is necessary for a definitive diagnosis of vascular 
invasion. The lesions with vascular invasion should be separated from the minimally invasive 
follicular carcinomas that show capsular invasion only, because angio-invasive lesions have a 
greater probability of recurrence and metastasis.  
 
Thus a simplistic view of a follicular cancer is shown below. 
 
 

 
 

We depict a follicular cancer below: 
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This shows the multiplicity of cells in what was initially a well ordered cell structure filled with 
collagen. 
 
Note the extensive infiltration. Again in simplistic terms, papillary is a form where we lose 
shape, namely a putative EMT transition and follicular is where we see extensive proliferation. 
Clearly both forms may occur. 
 
5.3.3.3 Neuroendocrine	Growth	and	Medullary	Thyroid	Cancer	
 
Medullary thyroid cancer is basically a neuroendocrine cancer. Neuroendocrine cancers are an 
interesting subset of many cancers and it worth reviewing the overall paradigm of their growth. 
 
Namely we look at neuroendocrine type effects and thus it requires a slightly more detailed 
understanding of the prostate As NCI notes24: 
 
Neuroendocrine: Having to do with the interactions between the nervous system and the 
endocrine system. Neuroendocrine describes certain cells that release hormones into the blood 
in response to stimulation of the nervous system. 
 
We then, in a rationalistic manner, can try and connect the other empirical facts and see if the 
initial observation can also be logically correct and from that logic ascertain a new therapeutic 
approach. 
 
A simplistic view of a neuroendocrine system is shown below. Basically the neuro cell activates 
the endocrine cell which in turn sends out signals to other collections of cells to do whatever they 
are supposed to do.  
 
 

 
24 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/neuroendocrine  
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Target Cell

Nerve Cell

Communicating from Neuro Cell 
to Endocrine Cell

Release from the 
Endocrine cell and 

activation of other cells

Other Cells/
Proliferation

 
 
The above is simplistic but based upon a substantial base of validated cellular signalling factors. 
Namely these results are empirical in a broad sense. Now when examining various cancers we 
often look at the cancer cell as being the driving factor. However in a neuroendocrine 
environment, the cancer cell may be getting its signalling from a cancer initiating cell which in 
turn is being signaled by a neuro cell. The cancer initiating cell may be blocked by blocking the 
signalling between it and the causative neuro cell. That is the logical or rationalistic part of this 
exercise.  
 
The questions now are;  
 
(i) If the malignancy occurs in the neuroendocrine cell, then does it create an environment for 
proliferation of other cells? 
 
(ii) If the malignancy occurs in the neuroendocrine cell does it send out signals that either block 
other homeostatic processes or does it accelerate angiogenesis in the new malignancy? 
 
(iii) If the malignancy starts in a non-neuroendocrine cell, are there processes that effectively 
"turn on" the neuroendocrine cell to facilitate such effects as proliferation, angiogenesis, gene 
suppression or activation in other cells? 
 
These are but a few of the questions which may be posed. Again we indicate that this is a bit 
simplistic but it does present the key issues related hereto. 
 
We have examined neuroendocrine driven cancers when examining the prostate. They are simply 
cancers where a local neuroendocrine cell starts controlling the proliferation process.  
 
As Franz notes: 
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 Medullary thyroid cancer (MTC) is a tumor of the parafollicular C cells that accounts for 
approximately 10% of all thyroid malignancies. An estimated 75% of MTC cases are sporadic, 
and the remaining 25% are familial. Embryologically, these cells originate within the neural 
crest and function similarly to other neuroendocrine cells within the amine precursor uptake and 
decarboxylation system.  
 
C cells are distributed throughout the entire thyroid gland, although they tend to predominate in 
the upper poles. Calcitonin, a hormone active in calcium metabolism, is synthesized and secreted 
by C cells and therefore serves as a useful serum marker for the presence of MTC. Calcitonin 
levels are most useful in screening individuals who are genetically predisposed to the disease 
and in following patients who already have been treated. The recent identification of the gene 
responsible for heritable forms of MTC has allowed earlier identification of individuals at risk 
for the disease  
 
Kim and Kuo have noted: 
 
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor derived from the thyroid C 
cells producing calcitonin. MTC accounts for 0.6% of all thyroid cancers and incidence of MTC 
increased steadily between 1997 and 2011 in Korea. It occurs either sporadically or in a 
hereditary form based on germline rearranged during transfection (RET) mutations. MTC can 
be cured only by complete resection of the thyroid tumor and any loco-regional metastases.  
 
The most appropriate treatment is still less clear in patients with residual or recurrent disease 
after initial surgery or those with distant metastases because most patients even with metastatic 
disease have indolent courses with slow progression for several years and MTC is not responsive 
to either radioactive iodine therapy or thyroid-stimulating hormone suppression. Recently, two 
tyrosine kinase inhibitors (TKIs), vandetanib and cabozantinib, are approved for use in patients 
with advanced, metastatic or progressive MTC.  
 
Baloch and LiVolsi note: 
 
 Medullary thyroid carcinoma comprises less than 10% of all thyroid malignancies. This tumor 
is of great diagnostic importance because of its aggressiveness, its close association with 
multiple endocrine neoplasia syndromes (MEN2A and 2B), and a relationship to a C cell 
hyperplasia, a probable pre cursor lesion.  
 
While the majority of medullary carcinomas are sporadic, about 10-20% are familial. Since 
these familial cases have been identified, a gene associated with medullary carcinoma has been 
identified on chromosome 10 and involves mutations in the RET oncogene.  
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and below: 
 

 
 
 
5.3.3.4 Anaplastic	
 
This is a highly aggressive cancer with nearly 100% mortality in 6 to 12 months. It is also quite 
rare but seems to be a sequella to a Graves diseased thyroid. Given its rarity and complexity it is 
worth just a mention. 
 
5.3.4 Expert Systems 
 
As Chamrara and Ying have note for CADS systems: 
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This review suggests that CAD of thyroid ultrasound features has a good diagnostic performance 
which is comparable to that of radiologists’ qualitative assessment with the potential for 
improved overall diagnostic accuracy when qualitative and quantitative approaches are 
combined. The nodule size, the experience of the operator and the choice of TIRADS system are 
potential influencers of CAD diagnostic performance. Future multi-center studies that compare 
similar CAD software based on standardized approaches and assess the diagnostic performance 
of combined Doppler ultrasound CAD and grey scale ultrasound CAD of the same thyroid 
nodules are recommended to further evaluate the clinical role of CAD in thyroid nodule 
characterization.  
 
5.4 SUMMARY	
 
In the examples above we considered imaging studies such as CAT, US, mpMRI amongst many 
and also histological and cytological studies. We considered pattern recognition approaches 
which use standard metrics such as PI-RADS and TI-RADS and histological and cytological 
metrics as well. We summarize some of these below. 
 

Cancer Imaging Cyto/Histo 
Prostate mpMRI for measurement of 

putative lesion areas using 
DW approaches as well as 
DCE, 
 
Then use of integrated and 
correlated US and mpMRI 
 

Primarily histological 
demonstrating loss of acinar 
structure and proliferation of 
basal cells. 
 
Loss of form and graduated 
pleiomorphic structure. 

Colon CAT or MRI looking for 
polyps 
 

Loss of papillary structure 

Breast X ray or mpMRI looking for 
lesions. 
 

Loss of glandular structure 

Thyroid Ultrasound metrics such as  Cytological markers such as 
irregular borders of nucleus, 
clear nucleus, orphan Annie 
eyes etc. 
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6 OBSERVATIONS 
 
Based upon the above presentation we now consider several observations. 
 
6.1 RNA	MARKERS	
 
As Demster et al have noted,  
 
Is it the gene or the expression of the gene? Is it the DNA or the RNA? As we progress in 
understanding cancers we often look for the putative gene. DNA can be read and the presence of 
absence of the gene is considered dispositive. However, it often is not. 
 
The real if is; does the gene do anything? Namely does it produce an RNA and in turn a protein? 
In a recent paper Biorxiv, CSHL, we have an interesting result. The authors note: 
 
Disappointing results with genome-based biomarkers have driven calls to look beyond the 
cancer genome to other possible indicators of cancer-specific vulnerabilities. A major 
alternative for tumor characterization is the transcriptome. Although RNA is more difficult to 
maintain in the clinic than DNA, studies have found that gene expression supplies the most 
significant predictive features for patient prognosis6. Previous work on predicting cell viability 
after compound treatment suggests that expression may be more powerful than DNA features for 
predicting drug response, but expression-based models are widely treated as undesirable either 
because they are considered trivial proxies for tissue-type or because they are seen as 
uninterpretable9. These suggestive studies point to the need  for a comprehensive comparison of 
expression and genomic molecular features as predictors of cancer vulnerability and a deeper 
interrogation of the interpretability of expression models.  
 
Here we present the first such study across five large datasets of cancer cell viability including 
both genetic and chemical perturbations. We find that RNA-Seq expression outperforms DNA-
derived features in predicting cell viability response in nearly all cases, including many 
perturbations with known genomic biomarkers. The best results are typically driven by a small 
number of interpretable expression features. Our findings suggest that both existing and new 
cancer targets are frequently better identified using RNA-seq gene expression than any 
combination of other cancer cell properties. 
 
RNA can be fragile and more difficult to assess. We have seen that RNA-seq does provide a 
means and have seen this in miRNA analyses. Perhaps this is an added methodology worthy of 
pursuit. 
 
6.2 NEURAL	NETWORKS	AND	DIMENSIONALITY	
 
I am wary of neural nets. As an example of this concern a recent paper by Poggio et al discusses 
some the issues as follows: 
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Once upon a time, models needed more data than parameters to provide a meaningful seem to 
avoid this basic constraint. In fact, more weights fitting. Deep networks than data is the standard 
situation for deep-learning networks that typically fit the data and still show good predictive 
performance on new data1. Of course, it has been known for some time that the key to good 
predictive performance is controlling the complexity of the network and not simply the raw 
number of its parameters.  
 
The complexity of the network depends on appropriate measures of complexity of the space of 
functions realized by the network such as VC dimension, covering numbers and Rademacher 
numbers. Complexity can be controlled during optimization by imposing a constraint, often 
under the form of a regularization penalty, on the norm of the weights, as all the notions of 
complexity listed above depend on it. The problem is that there is no obvious control of 
complexity in the training of deep networks! This has given an aura of magic to deep learning 
and has contributed to the belief that classical learning theory does not hold for deep networks  
 
What Poggio is saying is that if we want to find a and b in the following: 
 
y=ax+b 
 
then we often have lots of x and y values. In deep learning neural nets, say an image, we may 
have lots of as and bs and few x and y. That makes for an exceptionally unstable situation, in fact 
it is often if not always an indeterminate one! Yet using a neural network one would never know 
that! They always give answers, like those machines at amusement parks always giving a 
fortune. 
 
Thus the deep learning or neural nets was have examined may putatively have unstable end 
points. 
 
6.3 SPEECH	RECOGNITION	TO	IMAGE	RECOGNITION	
 
There is a bit of a parallel between the progress in speech recognition and in turn our discussion 
of image recognition. Speech recognition took over seventy years of work. Understanding human 
speech, understanding linguists and so forth. Neural nets seem to work quite well. However the 
effort was monumental. Now image recognition may follow a similar path yet it is significantly 
more complex. 
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